Impact of Interaction between Metropolitan Area and Shallow Lake on Daily Extreme Precipitation over Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two Extreme Precipitation Events
2.2. Model Configuration
2.3. Experiments
2.4. Observation Data
- (1)
- S-band raw radar data of CINRAD-SA Doppler weather radar in Changzhou (119.780° E, 31.901° N), Jiangsu.
- (2)
- Observation data of national hourly automatic rain gauge stations.
- (3)
- China’s automatic stations and CMORPH (Climate Prediction Center MORPHing technique) merged the hourly precipitation grid data set (Merged) provided by the China Meteorological Data Service Centre. The data set integrates the hourly precipitation of more than 30,000 automatic observation stations across China with the real-time satellite precipitation products retrieved by CMORPH, producing the merged data with a spatial resolution of 0.1° and a temporal resolution of per hour, which has a high accuracy in China, as well as captures the main changes of hourly precipitation during heavy precipitation [53].
- (4)
- The Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) Final Precipitation L3 Half Hourly 0.1-degree × 0.1-degree V06 (GPMI) [54]. The data set applies the unified algorithm that provides rainfall estimates by combining data from all of the passive-microwave instruments in the GPM Constellation, performs well in the lower reaches of the Yangtze River [55], and has a better capture of the actual variation tendency of hourly precipitation in extreme precipitation events [56].
2.5. Forecast Skill Scores
3. Results
3.1. Control Run Evaluations
3.1.1. EP627
3.1.2. EP925
3.2. Precipitation Differences between Sensitive Runs and Control Run
3.2.1. EP627
3.2.2. EP925
3.3. Differences in Surface Skin Temperature and Local Circulation
3.3.1. EP627
3.3.2. EP927
3.4. Differences of Shear Line and Water Vapor Propagation
3.4.1. EP627
3.4.2. EP925
3.5. Mechanism of Metropolises and Lakes Impacts on the Shear Line Torrential Rain
4. Conclusions and Discussion
- (1)
- Under the interaction of Lake Taihu and SXCMA, the precipitation in the study area will increase significantly. The simulation results in EP627 show that the SXCMA and Taihu Lake have increased precipitation by 10.6% and 5.8%, respectively, while for EP925 the numbers are 15.9% and 7.3%, which means that the influence of Lake Taihu and SXCMA on stronger shear line precipitation (EP627) is significantly weaker than that of a strong shear line (EP925). In addition, the SXCMA has a more obvious effect on enhancing precipitation—about twice that of Lake Taihu.
- (2)
- SXCMA mainly affects the intensity and movement of the SCL in the study area, and the strong vertical convection formed through the SCL will interact with the LLSL and indirectly affect the intensity and movement of the LLSL. This, in turn, affects the intensity and location of precipitation. SXCMA will markedly affect the generation intensity and shape of the LLSLs near the study area, and the impact of SXCMA on the LLSLs is significantly greater than that of Lake Taihu, as in EP925, Nocity did not produce distinct shear lines in the low level.
- (3)
- Lake Taihu plays an important role in maintaining the SCL during its movement due to lower surface roughness and lake–land breeze. Under the strong lake–land temperature difference, strong vertical convection on the ground will be triggered around Taihu Lake, then adjust and affect the location and intensity of the LLSL precipitation. In addition, Lake Taihu’s supply of water vapor to its surroundings will intensify the precipitation in the study area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER. A/420); United Nations: New York, NY, USA, 2019; pp. 9–55. [Google Scholar]
- Miao, S.; Chen, F.; Li, Q.; Fan, S. Impacts of Urban Processes and Urbanization on Summer Precipitation: A Case Study of Heavy Rainfall in Beijing on 1 August 2006. J. Appl. Meteorol. Climatol. 2011, 50, 806–825. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.; Yan, Z.; Hu, Y.; Jia, G. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J. Geophys. Res. Atmos. 2012, 117, D21103. [Google Scholar] [CrossRef] [Green Version]
- Dou, J.; Wang, Y.; Bornstein, R.; Miao, S. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteorol. Climatol. 2015, 54, 94–105. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. Urban influences on the spatiotemporal characteristics of runoff and precipitation during the 2009 Atlanta flood. J. Hydrometeorol. 2019, 20, 3–21. [Google Scholar] [CrossRef]
- Zhang, D.-L. Rapid urbanization and more extreme rainfall events. Sci. Bull. 2020, 65, 516–518. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, J.M.; Burian, S.J. Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interact. 2003, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Thielen, J.; Wobrock, W.; Gadian, A.; Mestayer, P.; Creutin, J.-D. The possible influence of urban surfaces on rainfall development: A sensitivity study in 2D in the meso-γ-scale. Atmos. Res. 2000, 54, 15–39. [Google Scholar] [CrossRef]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Diem, J.E.; Brown, D.P. Anthropogenic impacts on summer precipitation in central Arizona, USA. Prof. Geogr. 2003, 55, 343–355. [Google Scholar]
- Schmid, P.E.; Niyogi, D. Modeling urban precipitation modification by spatially heterogeneous aerosols. J. Appl. Meteorol. Climatol. 2017, 56, 2141–2153. [Google Scholar] [CrossRef]
- Huang, A.; Wang, J.; Dai, Y.; Yang, K.; Wei, N.; Wen, L.; Wu, Y.; Zhu, X.; Zhang, X.; Cai, S. Evaluating and improving the performance of three 1-D Lake models in a large deep Lake of the central Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 3143–3167. [Google Scholar] [CrossRef] [PubMed]
- Farley Nicholls, J.; Toumi, R. On the lake effects of the Caspian Sea. Q. J. R. Meteorol. Soc. 2014, 140, 1399–1408. [Google Scholar] [CrossRef]
- Sun, X.; Xie, L.; Semazzi, F.; Liu, B. Effect of lake surface temperature on the spatial distribution and intensity of the precipitation over the Lake Victoria basin. Mon. Weather. Rev. 2015, 143, 1179–1192. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Koike, T. Land-lake breezes at low latitudes: The case of Tonle Sap Lake in Cambodia. J. Geophys. Res. Atmos. 2013, 118, 6970–6980. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Qiu, C.; Wang, C. Evaluation of the WRF-lake model over two major freshwater lakes in China. J. Meteorol. Res. 2019, 33, 219–235. [Google Scholar] [CrossRef]
- Eichenlaub, V.L. Lake effect snowfall to the lee of the Great Lakes: Its role in Michigan. Bull. Am. Meteorol. Soc. 1970, 51, 403–413. [Google Scholar] [CrossRef]
- Notaro, M.; Holman, K.; Zarrin, A.; Fluck, E.; Vavrus, S.; Bennington, V. Influence of the Laurentian Great Lakes on regional climate. J. Clim. 2013, 26, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wang, L.; Yao, T.; Li, X.; Zhu, L.; Zhang, X. Observed and simulated lake effect precipitation over the Tibetan Plateau: An initial study at Nam Co Lake. J. Geophys. Res. Atmos. 2018, 123, 6746–6759. [Google Scholar] [CrossRef]
- Wen, L.; Lv, S.; Li, Z.; Zhao, L.; Nagabhatla, N. Impacts of the Two Biggest Lakes on Local Temperature and Precipitation in the Yellow River Source Region of the Tibetan Plateau. Adv. Meteorol. 2015, 2015, 248031. [Google Scholar] [CrossRef] [Green Version]
- Laird, N.F.; Desrochers, J.; Payer, M. Climatology of lake-effect precipitation events over Lake Champlain. J. Appl. Meteorol. Climatol. 2009, 48, 232–250. [Google Scholar] [CrossRef] [Green Version]
- Alcott, T.I.; Steenburgh, W.J.; Laird, N.F. Great Salt Lake–effect precipitation: Observed frequency, characteristics, and associated environmental factors. Weather. Forecast. 2012, 27, 954–971. [Google Scholar] [CrossRef]
- Owens, N.D.; Rauber, R.M.; Jewett, B.F.; McFarquhar, G.M. The contribution of lake enhancement to extreme snowfall within the Chicago–Milwaukee urban corridor during the 2011 Groundhog Day blizzard. Mon. Weather. Rev. 2017, 145, 2405–2420. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, S.; Liu, Y.; Zhang, W.; Yang, X. Analysis of a Convective Storm Crossing Poyang Lake in China. J. Meteorol. Res. 2020, 34, 529–545. [Google Scholar] [CrossRef]
- Schroeder, J.J.; Kristovich, D.A.; Hjelmfelt, M.R. Boundary layer and microphysical influences of natural cloud seeding on a lake-effect snowstorm. Mon. Weather. Rev. 2006, 134, 1842–1858. [Google Scholar] [CrossRef]
- Keeler, J.M.; Kristovich, D.A. Observations of urban heat island influence on lake-breeze frontal movement. J. Appl. Meteorol. Climatol. 2012, 51, 702–710. [Google Scholar] [CrossRef]
- Yang, L.; Smith, J.A.; Baeck, M.L.; Bou-Zeid, E.; Jessup, S.M.; Tian, F.; Hu, H. Impact of Urbanization on Heavy Convective Precipitation under Strong Large-Scale Forcing: A Case Study over the Milwaukee–Lake Michigan Region. J. Hydrometeorol. 2014, 15, 261–278. [Google Scholar] [CrossRef]
- Lee, X.; Liu, S.; Xiao, W.; Wang, W.; Gao, Z.; Cao, C.; Hu, C.; Hu, Z.; Shen, S.; Wang, Y.; et al. The Taihu Eddy Flux Network: An Observational Program on Energy, Water, and Greenhouse Gas Fluxes of a Large Freshwater Lake. Bull. Am. Meteorol. Soc. 2014, 95, 1583–1594. [Google Scholar] [CrossRef]
- Jiangsu Provincial Bureau of Statistics; Survey Office of the National Bureau of Statistics in Jiangsu. Jiangsu Statistical Yearbook; China Statistics Press: Beijing, China, 2019; pp. 35–75. [Google Scholar]
- Gu, H.; Ma, Z.; Li, M. Effect of a large and very shallow lake on local summer precipitation over the Lake Taihu basin in China. J. Geophys. Res. Atmos. 2016, 121, 8832–8848. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Qin, H.; Huang, J.; Liu, C.; Hu, C.; Wang, W.; Liu, S.; Lee, X. Spatiotemporal Characteristics of Lake Breezes over Lake Taihu, China. J. Appl. Meteorol. Climatol. 2017, 56, 2053–2065. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Li, G.; Wang, Y.; Liu, C.; Zhao, K.; Tao, X.; Hu, X.-M.; Lee, X. Improving Lake-Breeze Simulation with WRF Nested LES and Lake Model over a Large Shallow Lake. J. Appl. Meteorol. Climatol. 2019, 58, 1689–1708. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T. Increasing impacts from extreme precipitation on population over China with global warming. Sci. Bull. 2020, 65, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Liu, S.C.; Cicerone, R.J.; Shiu, C.-J.; Li, J.; Wang, J.; Zhang, Y. Trends of extreme precipitation in eastern China and their possible causes. Adv. Atmos. Sci. 2015, 32, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Li, J.; Yuan, W.; Chen, H. Changes in characteristics of late-summer precipitation over eastern China in the past 40 years revealed by hourly precipitation data. J. Clim. 2010, 23, 3390–3396. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Singh, V.P.; Luo, M.; Xie, Z. Summer extreme precipitation in eastern China: Mechanisms and impacts. J. Geophys. Res. Atmos. 2017, 122, 2766–2778. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Precursor circulation features for persistent extreme precipitation in central-eastern China. Weather. Forecast. 2014, 29, 226–240. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, M.; Ren, F.; Li, J.; Wong, W.-K. Synoptic situations of extreme hourly precipitation over China. J. Clim. 2016, 29, 8703–8719. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, A.; Wu, P.; Huang, D.; Xue, D.; Wu, Y. Drivers of summer extreme precipitation events over East China. Geophys. Res. Lett. 2021, e2021GL093670. [Google Scholar] [CrossRef]
- Gao, T.; Xie, L. Spatiotemporal changes in precipitation extremes over Yangtze River basin, China, considering the rainfall shift in the late 1970s. Glob. Planet. Change 2016, 147, 106–124. [Google Scholar] [CrossRef]
- Kang, C.; Luo, Z.; Zong, W.; Hua, J. Impacts of Urbanization on Variations of Extreme Precipitation over the Yangtze River Delta. Water 2021, 13, 150. [Google Scholar] [CrossRef]
- Ma, J.; Yao, X. Statistical analysis of the shear lines and torrential rains over the Yangtze-Huaihe river region during June-July in 1981–2013. Acta Meteorol. Sin. 2015, 73, 883–894. [Google Scholar]
- Gao, Y.; Xue, Y.; Peng, W.; Kang, H.-S.; Waliser, D. Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Adv. Atmos. Sci. 2011, 28, 1077–1098. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008; pp. 142–163. [Google Scholar]
- Wang, Z.; Duan, A.; Wu, G. Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon. Sci. China Earth Sci. 2014, 57, 1480–1493. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, Y.; Chen, Z.; Chen, J. Numerical Simulation and Diagnostic Analysis of a Yangtze and Huaihe River Shear-line Heavy Rainfall Event. Meteorol. Environ. Sci. 2012, 35, 17–25. [Google Scholar]
- Liu, R.; Ding, Z.; Zhang, Y.; Ma, C. Numerical simulation on a MCV case in Yangtze-Huaihe Basin. J. Meteorol. Sci. 2018, 38, 46–56. [Google Scholar]
- Zhang, Y.; Zhang, F.; Davis, C.A.; Sun, J. Diurnal evolution and structure of long-lived mesoscale convective vortices along the Mei-Yu front over the East China Plains. J. Atmos. Sci. 2018, 75, 1005–1025. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Qiao, F.; Liang, X.-Z.; Zhang, H.; Ding, Y. High-resolution Simulation of an Extreme Heavy Rainfall Event in Shanghai Using the Weather Research and Forecasting Model: Sensitivity to Planetary Boundary Layer Parameterization. Adv. Atmos. Sci. 2021, 38, 98–115. [Google Scholar] [CrossRef]
- Gu, H.; Jin, J.; Wu, Y.; Ek, M.B.; Subin, Z.M. Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Clim. Change 2015, 129, 471–483. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. (ATBD) Version 2015, 4, 26. [Google Scholar]
- Yu, L.; Leng, G.; Python, A.; Peng, J. A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China. Remote Sens. 2021, 13, 1208. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, W.; Hu, J.; Du, L.; Du, L. Capability of IMERG V6 Early, Late, and Final Precipitation Products for Monitoring Extreme Precipitation Events. Remote Sens. 2021, 13, 689. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 306–315. [Google Scholar]
Observation | Forecast | |
---|---|---|
Yes | No | |
yes | a | c |
no | b | d |
2015 | 2017 | |||||
---|---|---|---|---|---|---|
Ctrl | Nocity | Nolake | Ctrl | Nocity | Nolake | |
BIAS | 1.08 | 1.12 | 1.17 | 0.70 | 0.58 | 0.62 |
TS | 0.83 | 0.76 | 0.77 | 0.70 | 0.58 | 0.62 |
ETS | 0.67 | 0.56 | 0.56 | 0.47 | 0.35 | 0.39 |
TSS | 0.80 | 0.71 | 0.71 | 0.70 | 0.58 | 0.62 |
EP627 | EP925 | |
---|---|---|
Ctrl | 91.2 | 66.1 |
Nocity | 81.5 | 55.6 |
Nolake | 85.9 | 61.3 |
(Nocity-Ctrl)/Ctrl | −10.6% | −15.9% |
(Nolake-Ctrl)/Ctrl | −5.8% | −7.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Gao, Y. Impact of Interaction between Metropolitan Area and Shallow Lake on Daily Extreme Precipitation over Eastern China. Atmosphere 2022, 13, 306. https://doi.org/10.3390/atmos13020306
Li Z, Gao Y. Impact of Interaction between Metropolitan Area and Shallow Lake on Daily Extreme Precipitation over Eastern China. Atmosphere. 2022; 13(2):306. https://doi.org/10.3390/atmos13020306
Chicago/Turabian StyleLi, Zhe, and Yanhong Gao. 2022. "Impact of Interaction between Metropolitan Area and Shallow Lake on Daily Extreme Precipitation over Eastern China" Atmosphere 13, no. 2: 306. https://doi.org/10.3390/atmos13020306
APA StyleLi, Z., & Gao, Y. (2022). Impact of Interaction between Metropolitan Area and Shallow Lake on Daily Extreme Precipitation over Eastern China. Atmosphere, 13(2), 306. https://doi.org/10.3390/atmos13020306