Evaluation of Population–Food Relationship from the Perspective of Climate Productivity Potential: A Case Study of Eastern Gansu in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Evaluation Model of Climate Production Potential and Population–Food Relationship
2.3.2. Trend Analysis
2.3.3. Mutation Test
3. Results
3.1. Characteristics of Temperature and Precipitation Changes
3.2. Characteristics of Climate Production Potential Changes
3.3. Variation Characteristics of Population Carrying Capacity
3.4. Population–food Relationship Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Hu, H.; Tan, Y.; Yang, G.; Zhu, P.; Jiang, B. Quantifying the impacts of climate variability and human interventions on crop production and food security in the Yangtze River Basin, China, 1990–2015. Sci. Total Environ. 2019, 665, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Holman, I.; Lin, E.; Conway, D.; Jiang, J.; Xu, Y.; Li, Y. Climate change, water availability and future cereal production in China. Agric. Ecosyst. Environ. 2010, 135, 58–69. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C. Mapping global cropland and field size. Glob. Change Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.; Thow, A.M.; Wate, J.T.; Nonga, N.; Vatucawaqa, P.; Brewer, T.; Sharp, M.K.; Farmery, A.; Trevena, H.; Reeve, E.; et al. COVID-19 and Pacific food system resilience: Opportunities to build a robust response. Food Secur. 2020, 124, 783–791. [Google Scholar] [CrossRef]
- Godenau, D.; Caceres-Hernandez, J.J.; Martin-Rodriguez, G.; Gonzalez-Gomez, J.I. A consumption-oriented approach to measuring regional food self-sufficiency. Food Secur. 2020, 12, 1049–1063. [Google Scholar] [CrossRef]
- Ma, E.; Cai, J.; Lin, J.; Guo, H.; Han, Y.; Liao, L. Spatio-temporal evolution of global food security pattern and its influencing factors in 2000-2014. Acta Geogr. Sin. 2020, 75, 332–347. [Google Scholar]
- Hu, T.; Ju, Z.; Zhou, W. Regional pattern of grain supply and demand in China. Acta Geogr. Sin. 2016, 71, 1372–1383. [Google Scholar]
- Zhou, M.; Wang, J. Implications from pattern and evolution of global rice trade: A complex network analysis. J. Nat. Resour. 2020, 35, 1055–1067. [Google Scholar]
- Han, E.; Jiang, X.; Wang, H. Research on the current situation, causes and countermeasures of food safety problems in my country. Mod. Food 2019, 16, 3. [Google Scholar]
- Field, C.B.; Barros, V.R. (Eds.) Climate Change 2014—Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Dosio, A.; Naumann, G.; Van Den Berg, M.; Toreti, A. When will current climate extremes affecting maize production become the norm? Earth’s Future 2019, 7, 113–122. [Google Scholar] [CrossRef]
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land–atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci. 2019, 1436, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takac, J.; Ruget, F.; Ferrise, R.; et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. USA 2019, 116, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Tian, B.; Gong, L.; Qu, H.; Ji, S.; Li, X.; Zhang, X. Climate-induced potential productivity of forest vegetation during the past 308 years in Northern Daxingan Mountain region, China. Acta Ecol. Sin. 2017, 37, 1900–1911. [Google Scholar]
- Zhang, R. The Characteristics of Potential Climate Productivity of Grassland and Prediction Research from 1959 to 2008 in Gansu, Qinghai and Xinjiang. Master Thesis, Northwest Normal University, Lanzhou, China, 2011. [Google Scholar]
- Lieth, H. Modeling the primary productivity of the world. In Primary Productivity of the Biosphere; Springer: Berlin/Heidelberg, Germany, 1975; pp. 237–263. [Google Scholar]
- Lieth, H.; Box, E. Evapotranspiration and primary production: CW Thornthwaite Memorial Mode. Publ. Climatol. 1972, 25, 37–46. [Google Scholar]
- Uchijima, Z.; Seino, H. Agroclimatic evaluation of net primary productivity of natural vegetations chikugo model for evaluating net primary productivity. J. Agric. Meteorol. 1985, 40, 343–352. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, X. Study on NPP of natural vegetation in China under global climate change. Acta Phytoecol. Sin. 1996, 20, 11–19. [Google Scholar]
- Xu, Y.; Zhou, B.; Yu, L.; Xu, Y. Climatic potential productivity and population carrying capacity in China from 1961 to 2010. J. Meteorol. Environ. 2019, 35, 84–91. [Google Scholar]
- Li, Z.; Duan, C.; Jin, L.; Hu, X.; Li, B.; Yang, H. Spatial and temporal variability of climatic potential productivity in Yunnan province, China. Chin. J. Appl. Ecol. 2019, 30, 2181–2190. [Google Scholar]
- Luo, B.; Bian, D.; Bai, M.; La, B. The spatiotemporal change characteristics of net primary productivity in the Northern Tibetan Platea and its future change with 2 °C global warming. J. Glaciol. Geocryol. 2020, 42, 653–661. [Google Scholar]
- Zhou, K.; Du, J.; Yuan, L.; Ma, P.; Liu, Y. Responses of climatic potential grassland productivity to climate change in an alpine meadow area over the Nujiang Basin, Tibet from 1980 to 2008. Acta Prataculturae Sin. 2010, 19, 17–24. [Google Scholar]
- Zhao, X.; Wang, W.; Wan, W.; Li, H. Impact of climate change on potential productivity and phenological phase of forage in the Qinghai- Tibet Plateau in the past 50 years. Chin. J. Eco-Agriculutre 2015, 23, 1329–1338. [Google Scholar]
- Zhang, J. Global food security under the new crown pneumonia epidemic: Impact path and coping strategy. World Agric. 2021, 4, 10. [Google Scholar]
- Sun, X.Y. The precipitation characteristic and weather system types of precipitation in east Gansu. J. Arid Land Resour. Environ. 2006, 20, 35–39. [Google Scholar]
- Yin, H.; Zhang, B.; Zhang, J.; Sun, L.; He, X. Spatiotemporal variation patterns of climatic factors and climatic potential productivity of spring maize in eastern Gansu of Northwest China. Chin. J. Ecol. 2013, 32, 1504–1510. [Google Scholar]
- Luo, Y.; Cheng, Z.; Guo, X. The changing characteristics of potential climate productivity in Gansu Province during nearly 40 years. Acta Ecol. Sin. 2011, 31, 0221–0229. [Google Scholar]
- Wei, K.; Zhang, B.; Ma, S.; Wu, Q.; Cui, Y. Drought evolution characteristics and risk zoning of spring maize in Hedong of Gansu Province. Agric. Res. Arid Areas 2019, 37, 238–247. [Google Scholar]
- Li, D.; Liu, D. Gansu Climate; Meteorological Press: Beijing, China, 2000. [Google Scholar]
- Zhao, X.; Wan, W.; Wang, W. Influence of climate change on potential productivity of naked barely in the Qinghai-Tibet Plateau in the past 50 years. Chin. J. Eco-Agriculutre 2016, 24, 532–543. [Google Scholar]
- Feng, Z.; Yang, Y.; Zhang, J. The land carrying of China based on man-grain relationship. J. Nat. Resour. 2008, 23, 865–875. (In Chinese) [Google Scholar]
- Wu, S.; Yao, Z.; Jiang, L.; Wang, R.; Liu, Z. The spatial-temporal variations and hydrological effects of vegetation NPP based on MODIS in the source region of the Yangtze River. J. Nat. Resour. 2016, 31, 39–51. [Google Scholar]
- Wang, L. Analysis of Spatial-Temporal Variation Characteristics and Its Influencing Factors of GPP in Qaidam Basin. Master Thesis, Northwest Normal University, Lanzhou, China, 2016. [Google Scholar]
- Zhang, Q.; Zhu, B.; Yang, J.; Ma, P.; Liu, X.; Lu, G.; Wang, Y.; Yu, H.; Liu, W.; Wang, D. New characteristics about the climate humidification trend in Northwest China. Chin. Sci. Bull. 2021, 66. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, J.; Liu, W.; Han, L. Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of Northwest China during flood season. Sci. China Earth Sci. 2019, 62, 2083–2098. [Google Scholar] [CrossRef]
- Ma, Z.; Fu, C.; Yang, Q.; Zheng, Z.; Lv, M.; Li, M.; Duan, Y.; Chen, L. Drying trend in Northern China and its shift during 1951–2016. Chin. J. Atmos. Sci. 2018, 42, 951–961. (In Chinese) [Google Scholar]
- Ma, P.; Yang, J.; Lu, G.; Zhu, B.; Liu, W. The transitional change of climate in the eastern of northwest China. Plateau Meteorol. 2020, 39, 840–850. (In Chinese) [Google Scholar]
- Wang, Q.; Zhang, M.; Wang, S.; Luo, S.; Wang, B.; Zhu, X. Extreme temperature events in Yangtze River Basin during 1962–2011. Acta Geogr. Sin. 2013, 68, 611–625. [Google Scholar]
- Lieth, H. Primary production: Terrestrial ecosystems. Hum. Ecol. 1973, 1, 303–332. [Google Scholar] [CrossRef]
- Li, L.; Zhou, H.; Bao, A. Spatial and temporal variability of potential climate productivity in Central Asia. J. Nat. Resour. 2014, 29, 285–294. (In Chinese) [Google Scholar]
- Li, M.; Zhu, Y.; Zhou, J.; Ma, S. Human-grain Relationship and Its Future Change in Yunnan Based on Climatic Potential Productivity. Chin. J. Agrometeorol. 2019, 40, 96–104. [Google Scholar]
- Cheng, W.; Wang, H.; Dong, Y. Research on Influencing Factors of Population Mobility Decision-making in Northwest China-Based on the Perspective of New Spatial Economics. Northwest Popul. 2022, 43, 76–87. [Google Scholar]
- McBratney, A.B.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, J.; Zhao, X.; Triantafilis, J. Clay content mapping and uncertainty estimation using weighted model averaging. Catena 2022, 209, 105791. [Google Scholar] [CrossRef]
- Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- Zhao, D.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data. Soil Tillage Res. 2020, 200, 104618. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, X.; Khongnawang, T.; Arshad, M.; Triantafilis, J. A Vis-NIR Spectral Library to Predict Clay in Australian Cotton Growing Soil. Soil Sci. Soc. Am. J. 2018, 82, 1347–1357. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, Y.; Cai, C.R.; Yang, X.Y.; Cheng, L.G. Temporal and spatial change of land resource carrying capacity in Huaihai Economic Zone based on human-grain relationship. J. Jiangsu Norm. Univ. 2020, 38, 12–16. [Google Scholar]
- Zhang, X.; Xiao, W.; Wang, Y.; Wang, Y.; Wang, H.; Wang, Y.; Zhu, L.; Yang, R. Spatial-temporal changes in NPP and its relationship with climate factors based on sensitivity analysis in the Shiyang River Basin. J. Earth Syst. Sci. 2020, 129, 1–13. [Google Scholar] [CrossRef]
- Chen, T.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Jiang, L.; Chang, G.; Tuerhanjiang, L. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ. 2019, 653, 1311–1325. [Google Scholar] [CrossRef]
Population Carrying Capacity | Standard | |
---|---|---|
Type | Level | |
Food surplus | More than affluence | C < 0.5 |
Affluence | 0.5 ≤ C ≤ 0.75 | |
Surplus | 0.75 < C ≤ 0.875 | |
Population–food balance | Balance and surplus | 0.875 < C ≤ 1.0 |
Critical overload | 1.0 < C ≤ 1.125 | |
Population overload | Overload | 1.125 < C ≤ 1.25 |
Obviously overload | 1.25 < C ≤ 1.5 | |
Serious overload | C > 1.5 |
Decade | 1961–1970 | 1971–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2020 |
---|---|---|---|---|---|---|
Tspv | 8294.05 | 7993.59 | 8422.86 | 8257.20 | 8794.44 | 8903.81 |
Temperature | Precipitation | |
---|---|---|
Gaolan | −0.028 | 0.434 ** |
Hezuo | 0.634 ** | 0.791 ** |
Huajialing | 0.158 | 0.889 ** |
Huanxian | −0.07 | 0.956 ** |
Huining | −0.114 | 0.921 ** |
Jingtai | 0.335 ** | 0.745 ** |
Jingyuan | 0.299 * | 0.295 * |
Kongtong | 0.1 | 0.959 ** |
Lintao | −0.134 | 0.947 ** |
Linxia | 0.169 | 0.945 ** |
Maqu | 0.835 ** | 0.617 ** |
Maiji | 0.071 | 0.939 ** |
Minxian | 0.36 ** | 0.895 ** |
Tianshui | −0.131 | 0.965 ** |
Wudu | 0.051 | 0.471 ** |
Xifeng | 0.201 | 0.916 ** |
Yuzhong | −0.103 | 0.975 ** |
1986–1990 | 1991–2000 | 2001–2010 | 2011–2019 | |
---|---|---|---|---|
Cultivated land–population carrying capacity | 4.70 | 6.44 | 8.44 | 10.50 |
TSPV—population carrying capacity | 20.03 | 19.66 | 21.28 | 21.65 |
Multi-Year Average | 5% Guarantee Rate | 20% Guarantee Rate | 80% Guarantee Rate | 95% Guarantee Rate | Minimum | Maximum | |
---|---|---|---|---|---|---|---|
TSPV | 8444.32 | 7377.16 | 7926.52 | 8816.87 | 9234.31 | 7164.45 | 9989.25 |
Population carrying capacity | 21.11 | 18.44 | 19.82 | 22.04 | 23.09 | 17.91 | 24.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Yin, S. Evaluation of Population–Food Relationship from the Perspective of Climate Productivity Potential: A Case Study of Eastern Gansu in Northwest China. Atmosphere 2022, 13, 287. https://doi.org/10.3390/atmos13020287
Cheng J, Yin S. Evaluation of Population–Food Relationship from the Perspective of Climate Productivity Potential: A Case Study of Eastern Gansu in Northwest China. Atmosphere. 2022; 13(2):287. https://doi.org/10.3390/atmos13020287
Chicago/Turabian StyleCheng, Junqi, and Shuyan Yin. 2022. "Evaluation of Population–Food Relationship from the Perspective of Climate Productivity Potential: A Case Study of Eastern Gansu in Northwest China" Atmosphere 13, no. 2: 287. https://doi.org/10.3390/atmos13020287
APA StyleCheng, J., & Yin, S. (2022). Evaluation of Population–Food Relationship from the Perspective of Climate Productivity Potential: A Case Study of Eastern Gansu in Northwest China. Atmosphere, 13(2), 287. https://doi.org/10.3390/atmos13020287