An Analysis of the Microstructure of the Melting Layer of a Precipitating Stratiform Cloud at the Dissipation Stage
Abstract
:1. Introduction
2. Data Description
3. Flight Experimental Design
4. In Situ Aircraft Measurements
4.1. Vertical Variation in the Particle Habits
4.2. Particle Size Distribution and Spectral Parameters
4.3. Characteristics of the Melting Layer (ML)
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houze, R.A. Cloud Dynamics; Academic Press, Inc.: New York, NY, USA, 1993; p. 573. [Google Scholar]
- Szoke, E.J.; Zipser, E.J.; Jorgensen, D.P. A Radar Study of Convective Cells in Mesoscale Systems in GATE. Part I: Vertical Profile Statistics and Comparison with Hurricanes. J. Atmos. Sci. 1986, 43, 182–198. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.V. Research on clouds and precipitation Past, present, and future. Bull. Am. Meteorol. Soc. 1989, 70, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Zipser, E.J.; Lutz, K.R. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability. Mon. Weather Rev. 1994, 122, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Hogan, R.J.; Behera, M.; O’Connor, E.J.; Illingworth, A.J. Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett. 2004, 31, L05106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, Z.; Kollias, P.; Vogelmann, A.M.; Yang, K.; Luo, T. Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. Atmos. Chem. Phys. 2018, 18, 4317–4327. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.; Lei, H.; Hu, Z.; Yang, J.; Li, X. Simulations of Microphysics and Precipitation in a Stratiform Cloud Case over Northern China: Comparison of Two Microphysics Schemes. Adv. Atmos. Sci. 2019, 37, 117–129. [Google Scholar] [CrossRef]
- Rutledge, S.A.; Hobbs, P. The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands. J. Atmos. Sci. 1983, 40, 1185–1206. [Google Scholar] [CrossRef] [Green Version]
- Rangno, A.L.; Hobbs, P.V. Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res. Earth Surf. 2001, 106, 15065–15075. [Google Scholar] [CrossRef]
- Heymsfield, A.J. Precipitation Development in Stratiform Ice Clouds: A Microphysical and Dynamical Study. J. Atmos. Sci. 1977, 34, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Orville, H.D.; Farley, R.D.; Hirsch, J.H. Some Surprising Results from Simulated Seeding of Stratiform-Type Clouds. J. Clim. Appl. Meteorol. 1984, 23, 1585–1600. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.; Lei, H.; Hu, Z. A comparative study of the microstructure and precipitation mechanisms for two stratiform clouds in China. Atmos. Res. 2010, 96, 447–460. [Google Scholar] [CrossRef]
- Hou, T.; Lei, H.; He, Y.; Yang, J.; Zhao, Z.; Hu, Z. Aircraft Measurements of the Microphysical Properties of Stratiform Clouds with Embedded Convection. Adv. Atmos. Sci. 2021, 38, 966–982. [Google Scholar] [CrossRef]
- Yang, J.; Lei, H.; Hu, Z.; Hou, T. Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China. Atmos. Res. 2014, 142, 79–90. [Google Scholar] [CrossRef]
- Zhu, S.C.; Guo, X.L.; Lu, G.X.; Guo, L. Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in northern China. J. Atmos. Sci. 2015, 72, 2011–2032. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Bansemer, A.; Poellot, M.R.; Wood, N. Observations of Ice Microphysics through the Melting Layer. J. Atmos. Sci. 2015, 72, 2902–2928. [Google Scholar] [CrossRef]
- Mason, S.L.; Chiu, C.J.; Hogan, R.J.; Moisseev, D.; Kneifel, S. Retrievals of Riming and Snow Density From Vertically Pointing Doppler Radars. J. Geophys. Res. Atmos. 2018, 123, 13–807. [Google Scholar] [CrossRef] [Green Version]
- Tridon, F.; Battaglia, A.; Chase, R.J.; Turk, F.J.; Leinonen, J.; Kneifel, S.; Mroz, K.; Finlon, J.; Bansemer, A.; Tanelli, S.; et al. The Microphysics of Stratiform Precipitation During OLYMPEX: Compatibility Between Triple-Frequency Radar and Airborne In Situ Observations. J. Geophys. Res. Atmos. 2019, 124, 8764–8792. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J.; Schmitt, C.; Bansemer, A. Ice Cloud Particle Size Distributions and Pressure-Dependent Terminal Velocities from In Situ Observations at Temperatures from 0° to −86 °C. J. Atmos. Sci. 2013, 70, 4123–4154. [Google Scholar] [CrossRef]
- Willis, P.T.; Heymsfield, A.J. Structure of the melting layer in mesoscale convective storm stratiform precipitation. J. Atmos. Sci. 1989, 46, 2008–2025. [Google Scholar] [CrossRef] [Green Version]
- Carlin, J.T.; Ryzhkov, A.V. Estimation of Melting-Layer Cooling Rate from Dual-Polarization Radar: Spectral Bin Model Simulations. J. Appl. Meteorol. Clim. 2019, 58, 1485–1508. [Google Scholar] [CrossRef]
- Szeto, K.K.; Lin, C.A.; Stewart, R.E. Mesoscale Circulations Forced by Melting Snow. Part I: Basic Simulations and Dynamics. J. Atmos. Sci. 1988, 45, 1629–1641. [Google Scholar] [CrossRef]
- Trömel, S.; Ryzhkov, A.V.; Hickman, B.; Mühlbauer, K.; Simmer, C. Polarimetric Radar Variables in the Layers of Melting and Dendritic Growth at X Band—Implications for a Nowcasting Strategy in Stratiform Rain. J. Appl. Meteorol. Clim. 2019, 58, 2497–2522. [Google Scholar] [CrossRef]
- Oraltay, R.G.; Hallett, J. The Melting Layer: A Laboratory Investigation of Ice Particle Melt and Evaporation near 0 °C. J. Appl. Meteorol. 2005, 44, 206–220. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Bansemer, A.; Theis, A.; Schmitt, C. Survival of Snow in the Melting Layer: Relative Humidity Influence. J. Atmos. Sci. 2021, 78, 1823–1845. [Google Scholar] [CrossRef]
- Zawadzki, I.; Szyrmer, W.; Bell, C.; Fabry, F. Modeling of the Melting Layer. Part III: The Density Effect. J. Atmos. Sci. 2005, 62, 3705–3723. [Google Scholar] [CrossRef]
- Li, H.; Von Lerber Tiira, A.J.; Moisseev, D. Towards the connection between snow microphysics and melting layer: Insights from multi-frequency and dual-polarization radar observations during BAECC. Atmos. Chem. Phys. Disc. 2020, 20, 9547–9562. [Google Scholar] [CrossRef]
- Pruppacher, H.; Klett, J. Microphysics of Clouds and Precipitation; Atmospheric and Oceanographic Sciences Library 18; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Evans, A.G.; Locatelli, J.D.; Stoelinga, M.T.; Hobbs, P.V. The IMPROVE-1 Storm of 1–2 February 2001. Part II: Cloud Structures and the Growth of Precipitation. J. Atmos. Sci. 2005, 62, 3456–3473. [Google Scholar] [CrossRef]
- Woods, C.P.; Stoelinga, M.T.; Locatelli, J.D. Size Spectra of Snow Particles Measured in Wintertime Precipitation in the Pacific Northwest. J. Atmos. Sci. 2008, 65, 189–205. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.; Heymsfield, A.J.; DeMott, P.J.; Twohy, C.H.; Suski, K.J.; Toohey, D.W. High ice concentration observed in tropical maritime stratiform mixed-phase clouds with top temperatures warmer than −8 °C. Atmos. Res. 2019, 233, 104719. [Google Scholar] [CrossRef]
- Field, P.R. Aircraft Observations of Ice Crystal Evolution in an Altostratus Cloud. J. Atmos. Sci. 1999, 56, 1925–1941. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Bansemer, A.; Field, P.; Durden, S.L.; Stith, J.L.; Dye, J.E.; Hall, W.; Grainger, C.A. Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field Campaigns. J. Atmos. Sci. 2002, 59, 3457–3491. [Google Scholar] [CrossRef]
- Nakaya, U. Snow Crystals: Natural and Artificial; Harvard University Press: Cambridge, MA, USA, 1954. [Google Scholar]
- You, L.G.; Xiong, G.Y.; Gao, M.R.; Lu, Y.J.; Sun, K.F.; Ren, D.F. The characteristics of ice crystal formation and snow growth processes of in spring stratiform clouds in Jilin Province. Acta Meteorol. Sin. 1965, 35, 423–433. (In Chinese) [Google Scholar]
- Hobbs, P.V.; Rangno, A.L. Ice Particle Concentrations in Clouds. J. Atmos. Sci. 1985, 42, 2523–2549. [Google Scholar] [CrossRef] [Green Version]
- Crawford, I.; Bower, K.N.; Choularton, T.W.; Dearden, C.; Crosier, J.; Westbrook, C.; Capes, G.; Coe, H.; Connolly, P.J.; Dorsey, J.R.; et al. Ice formation and development in aged, wintertime cumulus over the UK: Observations and modelling. Atmos. Chem. Phys. 2012, 12, 4963–4985. [Google Scholar] [CrossRef] [Green Version]
- Korolev, A.; Isaac, G.A.; Hallett, J. Ice particle habits in stratiform clouds. Q. J. R. Meteorol. Soc. 2000, 126, 2873–2902. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Reidel: Boston, MA, USA, 1978; pp. 44–47. [Google Scholar]
- Heymsfield, A.; Willis, P. Cloud Conditions Favoring Secondary Ice Particle Production in Tropical Maritime Convection. J. Atmos. Sci. 2014, 71, 4500–4526. [Google Scholar] [CrossRef]
- Field, P.R.; Lawson, R.P.; Brown, P.R.A.; Lloyd, G.; Westbrook, C.; Moisseev, D.; Miltenberger, A.; Nenes, A.; Blyth, A.; Choularton, T.; et al. Chapter 7. Secondary Ice Production—Current state of the science and recommendations for the future. Meteorol. Monogr. 2016, 58, 7.1–7.20. [Google Scholar] [CrossRef] [Green Version]
- Hallett, J.; Mossop, S.C. Production of secondary ice particles during the riming process. Nature 1974, 249, 26–28. [Google Scholar] [CrossRef]
- Stark, D.; Colle, B.A.; Yuter, S.E. Observed Microphysical Evolution for Two East Coast Winter Storms and the Associated Snow Bands. Mon. Weather Rev. 2013, 141, 2037–2057. [Google Scholar] [CrossRef]
- Kneifel, S.; von Lerber, A.; Tiira, J.; Moisseev, D.; Kollias, P.; Leinonen, J. Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos. 2015, 120, 6034–6055. [Google Scholar] [CrossRef] [Green Version]
- Knight, C.A. Ice growth from the vapor at −5 °C. J. Atmos. Sci. 2012, 69, 2031–2040. [Google Scholar] [CrossRef]
- Hobbs, P.V.; Houze, R.A.; Matejka, T.J. The Dynamical and Microphysical Structure of an Occluded Frontal System and its Modification by Orography. J. Atmos. Sci. 1975, 32, 1542–1562. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.V.; Chang, S.; Locatelli, J.D. The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res. Earth Surf. 1974, 79, 2199–2206. [Google Scholar] [CrossRef]
Date | Aircraft | Time (CST–hhmm) | Main Instruments |
---|---|---|---|
29 June 2012 | Tongliao | First flights: 0607–0738 | CAS, PIP, CIP, and CCN |
second flights: 0854–1025 | |||
29 June 2012 | Baicheng | First flights: 0557–0751 | FSSP-100, 2D-P, and 2D-C |
second flights: 0856–1014 |
No. | Aircraft | Time (CST–hhmm) | Altitude (km) | Temperature (°C) |
---|---|---|---|---|
leg 1 | Baicheng | 0639–0644 | 3.85 | From 0.7 to 1.7 |
leg 2 | Baicheng | 0646–0651 | 4.35 | From −1.3 to 0.3 |
leg 3 | Baicheng | 0654–0659 | 4.85 | From −3.8 to −1.6 |
leg 4 | Baicheng | 0702–0706 | 5.45 | From −5.25 to −4.35 |
leg 5 | Baicheng | 0921–0926 | 3.95 | From 0.95 to 2.1 |
leg 6 | Baicheng | 0928–0933 | 4.46 | From −2.55 to −0.55 |
leg 7 | Baicheng | 0936–0940 | 5.0 | From −5.0 to −3.4 |
leg 8 | Baicheng | 0943–0947 | 5.42 | From −6.15 to −5.25 |
leg 9 | Tongliao | 0649–0653 | 3.58 | From 4.16 to 4.33 |
leg 10 | Tongliao | 0657–0702 | 4.09 | From 1.85 to 2.62 |
leg 11 | Tongliao | 0706–0710 | 4.65 | From 0.45 to 1.64 |
leg 12 | Tongliao | 0714–0716 | 5.16 | From −2.65 to −2.08 |
leg 13 | Tongliao | 0930–0935 | 3.52 | From 4.8 to 5.9 |
leg 14 | Tongliao | 0938–0940 | 4.05 | From 2.94 to 3.8 |
leg 15 | Tongliao | 0945–0948 | 4.59 | From 0.33 to 0.86 |
leg 16 | Tongliao | 0951–0952 | 5.08 | From −2.4 to −0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Lei, H.; Hu, W.; Huang, M.; Zhang, R.; Zhang, X.; Hou, T.; Lü, Y. An Analysis of the Microstructure of the Melting Layer of a Precipitating Stratiform Cloud at the Dissipation Stage. Atmosphere 2022, 13, 284. https://doi.org/10.3390/atmos13020284
Wei L, Lei H, Hu W, Huang M, Zhang R, Zhang X, Hou T, Lü Y. An Analysis of the Microstructure of the Melting Layer of a Precipitating Stratiform Cloud at the Dissipation Stage. Atmosphere. 2022; 13(2):284. https://doi.org/10.3390/atmos13020284
Chicago/Turabian StyleWei, Lei, Hengchi Lei, Wenhao Hu, Minsong Huang, Rong Zhang, Xiaoqing Zhang, Tuanjie Hou, and Yuhuan Lü. 2022. "An Analysis of the Microstructure of the Melting Layer of a Precipitating Stratiform Cloud at the Dissipation Stage" Atmosphere 13, no. 2: 284. https://doi.org/10.3390/atmos13020284
APA StyleWei, L., Lei, H., Hu, W., Huang, M., Zhang, R., Zhang, X., Hou, T., & Lü, Y. (2022). An Analysis of the Microstructure of the Melting Layer of a Precipitating Stratiform Cloud at the Dissipation Stage. Atmosphere, 13(2), 284. https://doi.org/10.3390/atmos13020284