Effects of COVID-19-Epidemic-Related Changes in Human Behaviors on Air Quality and Human Health in Metropolitan Parks
Abstract
:1. Introduction
2. Methodology
2.1. The Accuracy Analysis for the Developed Air Detector
2.1.1. Adjusted the R Squared Value
2.1.2. Standard Estimation Error
2.1.3. F-Test
2.2. Statistical Method
2.3. Reduction Effect
3. Materials and Experimental Fields
3.1. The Developed Test Devices
3.2. Experimental Fields
4. Test Results and Discussion
4.1. The Accuracy of the Developed Device
4.2. Analysis Results for the Detected Data
4.2.1. Meteorological Data
4.2.2. Relationship between Changes in Epidemic Outbreaks and PM2.5 Concentrations Variation
4.3. Statistical Analysis, Results, and Discussion
4.3.1. The Relationship between Different Epidemic Outbreak Periods and PM2.5 Concentration Changes
4.3.2. Statistical Measurement Analysis
4.4. The Influence of Epidemic Outbreak Changes on Health Effects
5. Conclusions
- The relevant government information illustrates that electricity consumption did not decline during the epidemic outbreak and industrial production is also operating normally, while urban vehicles and the active population decreased significantly; thus, mobile pollution sources are relatively reduced, improving PM2.5 benefits significantly;
- With the increased numbers of people diagnosed with COVID-19, the PM2.5 concentrations values decreased, which was positively correlated with a significant reduction of people’s outdoor activities;
- Analytical results of the monitoring data showed that the reduction in public outdoor activities significantly reduced mobile pollution sources. The PM2.5 concentration benefits in the park were about 63.01% to 64.77%, and the benefits for health improvement could be increased by about 73.53%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Dashboard. Available online: https://covid-19.nchc.org.tw/ (accessed on 3 December 2021).
- Taiwan National Infectious Disease Statistic System. Available online: https://www.cdc.gov.tw/Uploads/Files/05a8c38e-bdae-4d15-b073-8413488d818c.jpg (accessed on 21 January 2021).
- Tang, R.; Huang, X.; Zhou, D.; Wang, H.; Xu, J.; Ding, A. Global air quality change during the COVID-19 pandemic: Regionally different ozone pollution responses COVID-19:疫情期间全球空气质量变化:臭氧响应的区域间差异. Atmos. Ocean. Sci. Lett. 2021, 14, 100015. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in US air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef] [PubMed]
- Contini, D.; Costabile, F. Does air pollution influence COVID-19 outbreaks? Atmosphere 2020, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Pope, C.A., III; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An association between air pollution and mortality in six US cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Ambient (Outdoor) Air Quality and Health, 2016. Available online: http://www.who.int/mediacentre/factsheets/fs313/en/ (accessed on 27 February 2017).
- Orru, H.; Maasikmets, M.; Lai, T.; Tamm, T.; Kaasik, M.; Kimmel, V.; Forsberg, B. Health impacts of particulate matter in five major Estonian towns: Main sources of exposure and local differences. Air Qual. Atmos. Health 2011, 4, 254. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/home/cms-decommissioning (accessed on 26 September 2021).
- Lei, Y.-C.; Chan, C.-C.; Wang, P.-Y.; Lee, C.-T.; Cheng, T.-J. Effects of Asian dust event particles on imflammation markers in peripheral blood and bronchoalvelor lavage in pulmonary hypertensive rats. Environ. Res. 2004, 95, 71–76. [Google Scholar] [CrossRef]
- Chuang, K.-J.; Chan, C.-C.; Su, T.-C.; Lee, C.-T.; Tang, C.-S. The Effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am. J. Respir. Crit. Care Med. 2007, 176, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-Y.; Chao, H.J.; Chan, C.-C.; Lee, C.-T.; Wu, H.P.; Cheng, T.-J.; Guo, Y.-L. Effects of fine particulates and fungal spores on lung function in schoolchildren. Pediatrics 2011, 127, e690–e698. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Integrated Science Assessment for Particulate Matter. 2009. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=216546 (accessed on 27 February 2017).
- Underwood, E. Brain Pollution: Evidence Builds That Dirty Air Causes Alzheimer’s, Dementia. Sci. Mag, 2017. Available online: https://www.science.org/content/article/brain-pollution-evidence-builds-dirty-air-causes-alzheimer-s-dementia (accessed on 26 January 2017).
- Lung, S.C.C.; Chen, N.; Hwang, J.S.; Hu, S.C.; Wang, W.C.V.; Wen, T.Y.J.; Liu, C.H. Panel study using novel sensing devices to assess associations of PM2.5 with heart rate variability and exposure sources. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Taichung Coal-Fired Power Plant, Taiwan. Available online: https://www.power-technology.com/projects/taichung (accessed on 7 October 2009).
- Pan, J.N.; Chou, H.L. Applying Step Loss Function in the Evaluation of Environmental Risk. J. Manag. Syst. 2007, 14, 409–433. [Google Scholar]
- Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization: Tokyo, Japan, 1986. [Google Scholar]
- Spiring, F.A. The Reflected Normal Loss Function. Can. J. Stat. 1993, 21, 321–330. [Google Scholar] [CrossRef]
- Pan, J.N.; Wang, J.H. A Study of Loss Functions for Product Interference Analysis. Ind. Eng. Res. 2000, 2, 80–100. [Google Scholar]
- Available online: https://github.com/avaldebe/AQmon/blob/master/Documents/PMS3003_LOGOELE.pdf (accessed on 17 July 2020).
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H. Characteristics of Airborne Particulates in Taichung Urban Area A Case Study from 2008 to 2010. Master’s Thesis, National Chung-Hsin University, Taichung, Taiwan, 2011. [Google Scholar]
- Chiang, Y.C. Study on the Distribution Phenomena and Possible Sources of PM2.5 in the Central Taiwan. Master’s Thesis, Chaoyang University of Technology, Taichung, Taiwan, 2017. [Google Scholar]
- Lin, C.L. Factors Affecting Haze Pollution of PM2.5 in Central Taiwan Using Multivariate Analysis. Master’s Thesis, National Chung-Hsin University, Taichung, Taiwan, 2017. [Google Scholar]
- COVID-19 Global Dashboard by Taiwan. Available online: https://covid-19.nchc.org.tw/dt_005-covidTable_taiwan.php (accessed on 31 August 2021).
R | R2 | Adjusted R2 | Standard Estimation Error | Variance of R2 | Variance of F | Variance of Significanc F |
---|---|---|---|---|---|---|
0.92 | 0.84 | 0.84 | 4.57 | 0.84 | 1527.53 | 0.00 |
Day | Mean | SD | CV | MD | IQR | QD | MAD | |
---|---|---|---|---|---|---|---|---|
Before | 1 | 36.50 | 9.73 | 0.27 | 35.00 | 12.00 | 6.00 | 5.50 |
2 | 30.42 | 11.91 | 0.39 | 35.00 | 17.50 | 8.75 | 3.50 | |
3 | 18.00 | 4.01 | 0.22 | 19.00 | 5.50 | 2.75 | 2.50 | |
4 | 19.42 | 6.28 | 0.32 | 19.00 | 10.50 | 5.25 | 5.00 | |
5 | 20.04 | 8.72 | 0.43 | 18.00 | 12.00 | 6.00 | 5.00 | |
6 | 19.08 | 6.83 | 0.36 | 17.00 | 8.00 | 4.00 | 3.50 | |
7 | 19.29 | 9.56 | 0.50 | 23.00 | 16.50 | 8.25 | 5.00 | |
A | 1 | 17.17 | 7.45 | 0.43 | 19.50 | 14.00 | 7.00 | 7.00 |
2 | 14.42 | 8.98 | 0.62 | 14.00 | 15.00 | 7.50 | 8.00 | |
3 | 10.83 | 10.18 | 0.94 | 6.50 | 7.50 | 3.75 | 2.50 | |
4 | 12.21 | 3.76 | 0.31 | 12.00 | 5.00 | 2.50 | 2.50 | |
5 | 7.54 | 3.68 | 0.49 | 7.00 | 6.50 | 3.25 | 3.00 | |
6 | 5.54 | 1.69 | 0.31 | 5.00 | 1.50 | 0.75 | 1.00 | |
7 | 2.92 | 1.91 | 0.65 | 2.50 | 2.50 | 1.25 | 1.50 | |
B | 1 | 11.38 | 7.11 | 0.63 | 8.00 | 9.00 | 4.50 | 2.50 |
2 | 4.96 | 1.71 | 0.34 | 5.00 | 2.00 | 1.00 | 1.00 | |
3 | 7.04 | 2.10 | 0.30 | 7.00 | 3.50 | 1.75 | 2.00 | |
4 | 8.33 | 1.61 | 0.19 | 8.00 | 1.50 | 0.75 | 1.00 | |
5 | 7.58 | 1.86 | 0.25 | 8.00 | 2.50 | 1.25 | 1.00 | |
6 | 9.79 | 2.99 | 0.31 | 10.00 | 4.50 | 2.25 | 2.00 | |
7 | 8.25 | 3.15 | 0.38 | 8.50 | 5.00 | 2.50 | 2.50 | |
C | 1 | 7.88 | 2.89 | 0.37 | 8.00 | 3.50 | 1.75 | 2.00 |
2 | 14.54 | 7.60 | 0.52 | 15.50 | 13.00 | 6.50 | 5.00 | |
3 | 8.42 | 3.87 | 0.46 | 8.00 | 5.50 | 2.75 | 3.00 | |
4 | 13.46 | 7.52 | 0.56 | 11.00 | 10.00 | 5.00 | 4.00 | |
5 | 13.83 | 9.09 | 0.66 | 11.00 | 8.50 | 4.25 | 3.50 | |
6 | 25.50 | 9.13 | 0.36 | 27.50 | 15.00 | 7.50 | 8.50 | |
7 | 35.13 | 5.64 | 0.16 | 34.50 | 9.50 | 4.75 | 4.50 | |
D | 1 | 8.79 | 3.74 | 0.43 | 9.50 | 7.00 | 3.50 | 4.00 |
2 | 8.50 | 4.53 | 0.53 | 8.00 | 7.00 | 3.50 | 3.00 | |
3 | 16.13 | 10.25 | 0.64 | 16.00 | 19.00 | 9.50 | 10.50 | |
4 | 16.42 | 8.11 | 0.49 | 15.00 | 14.50 | 7.25 | 7.50 | |
5 | 20.46 | 8.30 | 0.41 | 19.00 | 16.00 | 8.00 | 8.50 | |
6 | 36.83 | 15.55 | 0.42 | 35.50 | 20.00 | 10.00 | 12.00 | |
7 | 39.79 | 6.54 | 0.16 | 43.00 | 7.50 | 3.75 | 2.00 |
Day | Mean | SD | CV | MD | IQR | QD | MAD | |
---|---|---|---|---|---|---|---|---|
Before | 1 | 36.96 | 9.29 | 0.25 | 37.00 | 9.50 | 4.75 | 5.50 |
2 | 31.04 | 13.44 | 0.43 | 34.50 | 24.50 | 12.25 | 8.00 | |
3 | 17.17 | 4.71 | 0.27 | 17.50 | 6.00 | 3.00 | 3.00 | |
4 | 19.79 | 5.28 | 0.27 | 18.50 | 8.50 | 4.25 | 2.50 | |
5 | 19.83 | 8.33 | 0.42 | 20.00 | 9.50 | 4.75 | 4.50 | |
6 | 17.04 | 7.36 | 0.43 | 16.50 | 7.50 | 3.75 | 3.50 | |
7 | 18.92 | 9.15 | 0.48 | 21.50 | 16.50 | 8.25 | 5.00 | |
A | 1 | 16.71 | 6.79 | 0.41 | 17.00 | 12.50 | 6.25 | 6.00 |
2 | 17.46 | 10.97 | 0.63 | 18.00 | 23.00 | 11.50 | 11.50 | |
3 | 10.79 | 10.18 | 0.94 | 6.00 | 7.50 | 3.75 | 3.50 | |
4 | 11.96 | 3.72 | 0.31 | 11.50 | 4.00 | 2.00 | 2.50 | |
5 | 8.08 | 3.74 | 0.46 | 7.50 | 5.50 | 2.75 | 2.50 | |
6 | 6.71 | 1.46 | 0.22 | 7.00 | 2.00 | 1.00 | 1.00 | |
7 | 2.92 | 1.79 | 0.61 | 2.50 | 2.50 | 1.25 | 1.50 | |
B | 1 | 9.88 | 5.19 | 0.53 | 8.50 | 5.00 | 2.50 | 2.50 |
2 | 6.21 | 1.93 | 0.31 | 6.00 | 2.00 | 1.00 | 1.00 | |
3 | 7.29 | 1.73 | 0.24 | 8.00 | 2.00 | 1.00 | 1.00 | |
4 | 8.63 | 1.76 | 0.20 | 8.00 | 1.50 | 0.75 | 1.00 | |
5 | 8.04 | 1.57 | 0.20 | 8.00 | 2.00 | 1.00 | 1.00 | |
6 | 9.58 | 2.39 | 0.25 | 10.00 | 3.00 | 1.50 | 2.00 | |
7 | 9.75 | 2.56 | 0.26 | 10.00 | 2.50 | 1.25 | 1.00 | |
C | 1 | 13.67 | 5.87 | 0.43 | 11.00 | 8.50 | 4.25 | 3.00 |
2 | 15.46 | 8.44 | 0.55 | 17.00 | 17.00 | 8.50 | 6.50 | |
3 | 8.17 | 4.28 | 0.52 | 6.00 | 8.00 | 4.00 | 1.00 | |
4 | 13.54 | 7.25 | 0.54 | 12.00 | 12.00 | 6.00 | 5.00 | |
5 | 13.71 | 7.94 | 0.58 | 10.50 | 6.50 | 3.25 | 1.50 | |
6 | 26.00 | 8.93 | 0.34 | 24.50 | 11.50 | 5.75 | 6.00 | |
7 | 35.33 | 5.87 | 0.17 | 35.00 | 10.00 | 5.00 | 4.50 | |
D | 1 | 9.38 | 3.32 | 0.35 | 10.00 | 5.50 | 2.75 | 3.00 |
2 | 8.71 | 4.25 | 0.49 | 8.00 | 6.50 | 3.25 | 3.00 | |
3 | 16.96 | 10.41 | 0.61 | 16.00 | 19.00 | 9.50 | 10.00 | |
4 | 17.25 | 9.32 | 0.54 | 19.00 | 19.50 | 9.75 | 9.00 | |
5 | 21.96 | 6.70 | 0.31 | 22.00 | 15.00 | 7.50 | 8.00 | |
6 | 29.17 | 4.72 | 0.16 | 28.50 | 5.50 | 2.75 | 2.00 | |
7 | 38.75 | 5.79 | 0.15 | 39.00 | 8.00 | 4.00 | 4.50 |
PM2.5 (μg/m3) | SDNN (Reduced) | LF/HF (Increased) | |
---|---|---|---|
I | 0.00–3.70 | Normal | Normal |
II | 3.70–14.40 | 3.68% | 3.86% |
III | 14.40–25.10 | 7.36% | 7.72% |
IV | 24.10–35.80 | 11.04% | 11.58% |
V | 35.80–49.20 | 14.72% | 15.44% |
VI | >49.20 | 18.40% | 19.30% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, W.-P.; Liu, C.-H. Effects of COVID-19-Epidemic-Related Changes in Human Behaviors on Air Quality and Human Health in Metropolitan Parks. Atmosphere 2022, 13, 276. https://doi.org/10.3390/atmos13020276
Sung W-P, Liu C-H. Effects of COVID-19-Epidemic-Related Changes in Human Behaviors on Air Quality and Human Health in Metropolitan Parks. Atmosphere. 2022; 13(2):276. https://doi.org/10.3390/atmos13020276
Chicago/Turabian StyleSung, Wen-Pei, and Chun-Hao Liu. 2022. "Effects of COVID-19-Epidemic-Related Changes in Human Behaviors on Air Quality and Human Health in Metropolitan Parks" Atmosphere 13, no. 2: 276. https://doi.org/10.3390/atmos13020276
APA StyleSung, W. -P., & Liu, C. -H. (2022). Effects of COVID-19-Epidemic-Related Changes in Human Behaviors on Air Quality and Human Health in Metropolitan Parks. Atmosphere, 13(2), 276. https://doi.org/10.3390/atmos13020276