Variations of Black Carbon Concentrations in Two Sites in Mexico: A High-Altitude National Park and a Semi-Urban Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. BC Measurements
3. Results and Discussion
3.1. Seasonal Trends of BC
3.2. Average Diurnal and Weekly Cycles of BC
3.3. Comparison of BC Concentrations between 2015 and 2017
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasser, E.; Hemb. Report to Congress on Black Carbon; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2012.
- Zhang, X.; Ming, J.; Li, Z.; Wang, F.; Zhang, G. The online measured black carbon aerosol and source orientations in the Nam Co region, Tibet. Environ. Sci. Pollut. Res. 2017, 24, 25021–25033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barman, N.; Gokhale, S. Urban black carbon-source apportionment, emissions and long-range transport over the Brahmaputra River Valley. Sci. Total Environ. 2019, 693, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brewer, T.L. Black carbon emissions and regulatory policies in transportation. Energy Policy 2019, 129, 1047–1055. [Google Scholar] [CrossRef]
- Smith, K.R.; Jerrett, M.; Anderson, H.R.; Burnett, R.T.; Stone, V.; Derwent, R.; Atkinson, R.W.; Cohen, A.; Shonkoff, S.B.; Krewski, D.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Health implications of short-lived greenhouse pollutants. Lancet 2009, 374, 2091–2103. [Google Scholar] [CrossRef] [Green Version]
- Wallack, J.S.; Ramanathan, V. The other climate changers: Why black carbon and ozone also matter. Foreign Aff. 2009, 88, 105–113. [Google Scholar]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Diapouli, E.; Kalogridis, A.C.; Markantonaki, C.; Vratolis, S.; Fetfatzis, P.; Colombi, C.; Eleftheriadis, K. Annual variability of black carbon concentrations originating from biomass and fossil fuel combustion for the suburban aerosol in Athens, Greece. Atmosphere 2017, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Contini, D.; Vecchi, R.; Viana, M. Carbonaceous aerosols in the atmosphere. Atmosphere 2018, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Di Ianni, A.; Costabile, F.; Barnaba, F.; Di Liberto, L.; Weinhold, K.; Wiedensohler, A.; Struckmeier, C.; Drewnick, F.; Gobbi, G.P. Black carbon aerosol in Rome (Italy): Inference of a long-term (2001–2017) record and related trends from AERONET sun-photometry data. Atmosphere 2018, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Wang, R. Global Emission Inventory and Atmospheric Transport of Black Carbon. Ph.D. Thesis, Peking University, Beijing, China, 2015. [Google Scholar]
- Janssen, N.A.H.; Gerlofs-Nijland, M.E.; Lanki, T.; Salonen, R.O.; Cassee, F.; Hoek, G.; Fischer, P.; Brunekreef, B.; Krzyzanowski, M. Health Effects of Black Carbon; WHO Regional Office for Europe: Copenhagen, Denmark, 2012. [Google Scholar]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO Document Production Services: Geneva, Switzerland, 2016. [Google Scholar]
- Secretaría de Medio Ambiente y Recursos Naturales, (SEMARNAT) and Instituto Nacional de Ecología y Cambio Climático (INECC). Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero 1990–2015; Instituto Nacional de Ecología y Cambio Climático: Mexico City, Mexico, 2018. [Google Scholar]
- Watson, J.G.; Chow, J.C. Estimating middle-, neighborhood-, and urban-scale contributions to elemental carbon in Mexico City with a rapid response aethalometer. J. Air Waste Manag. Assoc. 2001, 51, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Salcedo, D.; Onasch, T.B.; Dzepina, K.; Canagaratna, M.R.; Zhang, Q.; Huffman, A.J.; DeCarlo, P.; Jayne, J.T.; Mortimer, P.; Worsnop, D.R.; et al. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with aerosol mass spectrometry. results from the CENICA Supersite. Atmos. Chem. Phys. 2006, 6, 925–946. [Google Scholar] [CrossRef] [Green Version]
- Retama, A.; Baumgardner, D.; Raga, G.B.; McMeeking, G.R.; Walker, J.W. Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City. Atmos. Chem. Phys. 2015, 15, 9693–9709. [Google Scholar] [CrossRef] [Green Version]
- Peralta, O.; Ortínez-Alvarez, A.; Basaldud, R.; Santiago, N.; Alvarez-Ospina, H.; Cruz, K.; Barrera, V.; Espinosa, M.L.; Saavedra, I.; Castro, T.; et al. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 2019, 230, 104626. [Google Scholar] [CrossRef]
- Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity. Sci. Total Environ. 2015, 527–528, 455–464. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Sarnat, J.A.; Sarnat, S.E.; Garcia, J.H.; Holguin, F.; Flores Luèvano, S.; Li, W.W. Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juárez, Chihuahua (México). Environ. Pollut. 2011, 59, 2476–2486. [Google Scholar] [CrossRef]
- Limon-Sanchez, M.T.; Carbajal-Romero, P.; Hernandez-Mena, L.; Saldarriaga-Norena, H.; Lopez-Lopez, A.; Cosio-Ramirez, R.; Arriaga-Colina, J.L.; Smith, W. Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008. Atmos. Pollut. Res. 2011, 2, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Shores, C.A.; Klapmeyer, M.E.; Quadros, M.E.; Marr, L.C. Sources and transport of black carbon at the California-Mexico border. Atmos. Environ. 2013, 70, 490–499. [Google Scholar] [CrossRef]
- Takahama, S.; Russell, L.M.; Shores, C.A.; Marr, L.C.; Zheng, J.; Levy, M.; Zhang, R.; Castillo, E.; Rodriguez-Ventura, J.G.; Quintana, P.J.E.; et al. Diesel vehicle and urban burning contributions to black carbon concentrations and size distributions in Tijuana, Mexico, during the Cal-Mex 2010 campaign. Atmos. Environ. 2014, 88, 341–352. [Google Scholar] [CrossRef]
- Liñán-Abanto, R.N.; Peralta, O.; Salcedo, D.; Ruiz-Suárez, L.G.; Arnott, P.; Paredes-Miranda, G.; Alvarez-Ospina, H.; Castro, T. Optical properties of atmospheric particles over an urban site in Mexico City and a peri-urban site in Queretaro. J. Atmos. Chem. 2019, 76, 201–228. [Google Scholar] [CrossRef]
- INEGI (Instituto Nacional de Estadística y Geograía). Encuesta Intercensal 2015: Marco Conceptual. 2015. Available online: https://www.inegi.org.mx/contenido/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825098742.pdf (accessed on 31 July 2021).
- Baumgardner, D.; Grutter, M.; Allan, J.; Ochoa, C.; Rappenglueck, B.; Russell, L.M.; Arnott, P. Physical and chemical properties of the regional mixed layer of Mexico’s Megapolis. Atmos. Chem. Phys. 2009, 9, 5711–5727. [Google Scholar] [CrossRef] [Green Version]
- SEMARNAT (Secretaria del Medio Ambiente y Recursos Naturales). Parque Nacional lztaccíhuatl-Popocatépetl. 2016. Available online: https://www.gob.mx/semarnat/articulos/parque-nacional-iztaccihuatl-popocatepetl?idiom=es (accessed on 30 October 2021).
- Espinasa, P.R. Historia de la Actividad del Volcán Popocatépetl 17 Años de Erupciones; Centro Nacional de Prevención de Desastres(CENAPRED): Mexico City, Mexico, 2014.
- Arnott, W.P.; Moosmüller, H.; Rogers, C.F.; Jin, T.; Bruch, R. Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description. Atmos. Environ. 1999, 33, 2845–2852. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, R.J.; Cao, J.; Han, Y.; Wang, G.; Li, G.; Wang, Y.; Dai, W.; Zhang, R.; Zhou, Y. Mixing state of black carbon aerosol in a heavily polluted urban area of China: Implications for light absorption enhancement. Aerosol Sci. Technol. 2014, 48, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Salcedo, D.; Alvarez-Ospina, H.; Peralta, O.; Castro, T. PM1 chemical characterization during the ACU15 campaign, south of Mexico City. Atmosphere 2018, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Habib, G.; Bergstrom, R.W. Limitations in the enhancement of visible light absorption due to mixing state. J. Geophys. Res. Atmos. 2006, 111, D20211. [Google Scholar] [CrossRef]
- Velasco, E.; Márquez, C.; Bueno, E.; Bernabé, R.M.; Sánchez, A.; Fentanes, O.; Wöhrnschimmel, H.; Cárdenas, B.; Kamilla, A.; Wakamatsu, S.; et al. Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmos. Chem. Phys. 2008, 8, 3061–3079. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.S.; Zuberi, B.; Molina, L.T.; Molina, M.J.; Iedema, M.J.; Cowin, J.P.; Gaspar, D.J.; Wang, C.; Laskin, A. Processing of soot in an urban environment: Case study from the Mexico City Metropolitan Area. Atmos. Chem. Phys. 2005, 5, 3033–3043. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.E.; Lee, K.; Müller, D. Effect of internal mixture on black carbon radiative forcing. Tellus B Chem. Phys. Meteorol. 2012, 64, 10925. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Aiken, A.C.; Gorkowski, K.; Dubey, M.K.; Cappa, C.D.; Williams, L.R.; Herndon, S.C.; Massoli, P.; Fortner, E.C.; Chhabra, P.S.; et al. Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat. Commun. 2015, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gyawali, M.; Arnott, W.P.; Lewis, K.; Moosmüller, H. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption. Atmos. Chem. Phys. 2009, 9, 8007–8015. [Google Scholar] [CrossRef] [Green Version]
- Pavia, R. Eficiencia de Absorción de Masa de Carbono Elemental y Propiedades Ópticas de Partículas Atmosféricas PM2.5. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2017. [Google Scholar]
- Knox, A.; Evans, G.J.; Brook, J.R.; Yao, X.; Jeong, C.-H.; Godri, K.J.; Sabaliauskas, K.; Slowik, J.G. Mass Absorption Cross-Section of Ambient Black Carbon Aerosol in Relation to Chemical Age. Aerosol Sci. Technol. 2009, 43, 522–532. [Google Scholar] [CrossRef]
- Taheri, A.; Aliasghari, P.; Hosseini, V. Black carbon and PM2.5 monitoring campaign on the roadside and residential urban background sites in the city of Tehran. Atmos. Environ. 2019, 218, 116928. [Google Scholar] [CrossRef]
- INEGI (Instituto Nacional de Estadística y Geograía). Transporte—Parque Vehicular. 2017. Available online: https://www.inegi.org.mx/temas/vehiculos/ (accessed on 20 July 2020).
Season | JQRO 2015 | ALTZ 2015 | JQRO 2017 | ALTZ 2017 |
---|---|---|---|---|
S1 (dry-cold) January–March | 0.65 ± 0.46 | - | 0.91 ± 0.74 | 0.55 ± 0.34 |
S2 (dry-hot) April–June | 0.81 ± 0.31 | 0.26 ± 0.09 | 0.83 ± 0.57 | 0.63 ± 0.33 |
S3 (rainy) July–September | 0.68 ± 0.27 | 0.48 ± 0.8 | 0.62 ± 0.47 | 0.43 ± 0.25 |
S4 (dry-cold) October–December | 0.79 ± 0.49 | 0.34 ± 0.42 | 0.93 ± 0.84 | 0.72 ± 0.45 |
Annual | 0.75 | 0.27 | 0.84 ± 0.70 | 0.58 ± 0.37 |
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JQRO | ||||||||||||
Temp | 15.48 | 17.36 | 18.26 | 20.35 | 22.87 | 21.23 | 19.06 | 20.04 | 18.08 | 17.34 | 16.39 | 14.58 |
Rad | 382.24 | 456.58 | 463.96 | 533.39 | 487.34 | 460.86 | 412.37 | 448.44 | 436.59 | 443.04 | 499.53 | 427.87 |
BC | 1.07 | 0.92 | 0.73 | 0.78 | 1.00 | 0.70 | 0.62 | - | 0.63 | 0.68 | 0.88 | 1.24 |
ALTZ | ||||||||||||
Temp | 3.96 | 3.55 | 3.69 | 5.78 | 6.96 | 6.14 | 5.04 | 5.87 | 5.81 | 4.98 | 6.09 | 4.34 |
Rad | 474.42 | 500.17 | 418.57 | 457.77 | 404.77 | 305.11 | 334.23 | 369.74 | 274.70 | 370.26 | 498.49 | 486.82 |
BC | 0.45 | 0.64 | 0.55 | 0.71 | 0.77 | 0.42 | 0.38 | 0.45 | 0.46 | 0.61 | 0.77 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyte-Lugo, M.; Sandoval, B.; Salcedo, D.; Peralta, O.; Castro, T.; Alvarez-Ospina, H. Variations of Black Carbon Concentrations in Two Sites in Mexico: A High-Altitude National Park and a Semi-Urban Site. Atmosphere 2022, 13, 216. https://doi.org/10.3390/atmos13020216
Leyte-Lugo M, Sandoval B, Salcedo D, Peralta O, Castro T, Alvarez-Ospina H. Variations of Black Carbon Concentrations in Two Sites in Mexico: A High-Altitude National Park and a Semi-Urban Site. Atmosphere. 2022; 13(2):216. https://doi.org/10.3390/atmos13020216
Chicago/Turabian StyleLeyte-Lugo, Martha, Bruno Sandoval, Dara Salcedo, Oscar Peralta, Telma Castro, and Harry Alvarez-Ospina. 2022. "Variations of Black Carbon Concentrations in Two Sites in Mexico: A High-Altitude National Park and a Semi-Urban Site" Atmosphere 13, no. 2: 216. https://doi.org/10.3390/atmos13020216
APA StyleLeyte-Lugo, M., Sandoval, B., Salcedo, D., Peralta, O., Castro, T., & Alvarez-Ospina, H. (2022). Variations of Black Carbon Concentrations in Two Sites in Mexico: A High-Altitude National Park and a Semi-Urban Site. Atmosphere, 13(2), 216. https://doi.org/10.3390/atmos13020216