Impact of the Microphysics in HARMONIE-AROME on Fog
Abstract
:1. Introduction
2. Methods
2.1. Cloud Droplet Characterisation in HARMONIE-AROME
2.1.1. Constant CDNC
2.1.2. Variable CDNC
2.2. Parametrisation of Sedimentation
2.3. Description of Experiments
3. Case Studies
3.1. Iberian Domain
3.2. North Sea
4. Results
4.1. Iberian Domain
4.2. North Sea
5. Discussion
- REF_VAR. In general, this experiment is able to partially reduce the areal extent of spurious fog over the sea. For the Iberian Peninsula, the spatial extent of fog over land is excessively reduced. Even though, this experiment is in agreement with observations in the south of France. For the North Sea, the fog extent is larger than observed but reduced in comparison with the experiments using the constant CDNC configuration.
- CONST_DEFAULT. This experiment reproduces in a better way the spatial extent of fog over the Iberian Peninsula. However, it predicts fog in the south of France that is not observed. Moreover, it develops unobserved fog in the Atlantic Ocean off the coast of Africa. In the North Sea case, the spatial extent of fog is larger than in the rest of the experiments; the cloud water content is also excessive in this experiment.
- CONST_A2N1. This experiment behaves in a similar way to CONST_DEFAULT over land and sea. It displays a lower spatial extent of fog and reduced cloud water content over the sea and, in general, the opposite behaviour over land. This can be understood by the modifications to the shape parameters that slightly increase sedimentation over the sea (and the opposite over land).
- CONST_SEA07. In general, this experiment behaves differently from the rest. As a negative point, the Iberian domain shows mostly fog in the Mediterranean Sea and underestimates low clouds. However, it removes the spurious fog off the coast of Africa. For the North Sea, the reduction of fog after 23 h is in good agreement with observations. However, it does not reproduce the observed fog at later forecast times (after 47 h).
- VAR_CDNC_RED. For the Iberian domain, this experiment shows a general reduction of fog which is positive in the south of France and off the African coast but not over the Iberian Peninsula. For the North Sea, this experiment reproduces the fog better, compared with REF_VAR, after 23 h and can be considered the second best (after CONST_SEA07). This experiment shows the best spatial distribution of fog after 47 h.
- VAR_NOSED. For the Iberian domain, in the Mediterranean Sea, the larger spatial extent of clouds reproduces the observation better. However, the spurious fog off the coast of Africa is more extended. For the North Sea, this experiment clearly deviates from the observations (and from the rest of the experiments), showing a different distribution of fog and the highest cloud water content.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gultepe, I.; Tardif, R.; Michaelides, S.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Gultepe, I.; Milbrandt, J.A.; Zhou, B. Marine fog: A review on microphysics and visibility prediction. In Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting; Springer: Berlin/Heidelberg, Germany, 2017; pp. 345–394. [Google Scholar]
- Bergot, T.; Koracin, D. Observation, Simulation and Predictability of Fog: Review and Perspectives. Atmosphere 2021, 12, 235. [Google Scholar] [CrossRef]
- Price, J. Radiation fog. Part I: Observations of stability and drop size distributions. Bound. Layer Meteorol. 2011, 139, 167–191. [Google Scholar] [CrossRef]
- Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine fog: A review. Atmos. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Mazoyer, M.; Burnet, F.; Denjean, C.; Roberts, G.C.; Haeffelin, M.; Dupont, J.C.; Elias, T. Experimental study of the aerosol impact on fog microphysics. Atmos. Chem. Phys. 2019, 19, 4323–4344. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.K.E.; Renfrew, I.A.; Dorling, S.R.; Price, J.D.; Boutle, I.A. Sub-km scale numerical weather prediction model simulations of radiation fog. Q. J. R. Meteorol. Soc. 2020, 147, 746–763. [Google Scholar] [CrossRef]
- Mazoyer, M.; Burnet, F.; Denjean, C. Experimental study on the evolution of droplet size distribution during the fog life cycle. Atmos. Chem. Phys. 2022, 22, 11305–11321. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Porson, A.N.F.; Bornemann, F.J.; Weeks, M.; Field, P.R.; Lock, A.P. Improved microphysical parametrization of drizzle and fog for operational forecasting using the Met Office Unified Model. Q. J. R. Meteorol. Soc. 2013, 139, 488–500. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A.M. The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound. Layer Meteorol. 2015, 154, 265–289. [Google Scholar] [CrossRef]
- Boutle, I.A.; Finnenkoetter, A.; Lock, A.P.; Wells, H. The London Model: Forecasting fog at 333 m resolution. Q. J. R. Meteorol. Soc. 2016, 142, 360–371. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; de Bode, M. Unravelling the relative roles of physical processes in modelling the life cycle of a warm radiation fog. Q. J. R. Meteorol. Soc. 2018, 144, 1539–1554. [Google Scholar] [CrossRef]
- Boutle, I.; Angevine, W.; Bao, J.W.; Bergot, T.; Bhattacharya, R.; Bott, A.; Ducongé, L.; Forbes, R.; Goecke, T.; Grell, E.; et al. Demistify: A large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog. Atmos. Chem. Phys. 2022, 22, 319–333. [Google Scholar] [CrossRef]
- Ribaud, J.F.; Haeffelin, M.; Dupont, J.C.; Drouin, M.A.; Toledo, F.; Kotthaus, S. PARAFOG v2. 0: A near real-time decision tool to support nowcasting fog formation events at local scales. Atmos. Meas. Tech. 2021, 14, 7893–7907. [Google Scholar] [CrossRef]
- Thompson, G.; Berner, J.; Frediani, M.; Otkin, J.A.; Griffin, S.M. A Stochastic Parameter Perturbation Method to Represent Uncertainty in a Microphysics Scheme. Mon. Weather Rev. 2021, 149, 1481–1497. [Google Scholar] [CrossRef]
- Frogner, I.L.; Andrae, U.; Ollinaho, P.; Hally, A.; Hämäläinen, K.; Kauhanen, J.; Ivarsson, K.I.; Yazgi, D. Model uncertainty representation in a convection-permitting ensemble-SPP and SPPT in HarmonEPS. Mon. Weather Rev. 2022, 150, 775–795. [Google Scholar] [CrossRef]
- Lakra, K.; Avishek, K. A review on factors influencing fog formation, classification, forecasting, detection and impacts. Rend. Lincei Sci. Fis. Nat. 2022, 33, 319–353. [Google Scholar] [CrossRef]
- Jakob, C. Accelerating progress in global atmospheric model development through improved parameterizations: Challenges, opportunities, and strategies. Bull. Am. Meteorol. Soc. 2010, 91, 869–876. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Sánchez, J.L.; García-Ortega, E. Empirical values and assumptions in the microphysics of numerical models. Atmos. Res. 2019, 215, 214–238. [Google Scholar] [CrossRef]
- de Rooy, W.C.; Siebesma, P.; Baas, P.; Lenderink, G.; de Roode, S.; de Vries, H.; van Meijgaard, E.; Meirink, J.F.; Tijm, S.; van ’t Veen, B. Model development in practice: A comprehensive update to the boundary layer schemes in HARMONIE-AROME cycle 40. Geosci. Model Dev. 2022, 15, 1513–1543. [Google Scholar] [CrossRef]
- Bengtsson, L.; Andrae, U.; Aspelien, T.; Batrak, Y.; Calvo, J.; de Rooy, W.; Gleeson, E.; Hansen-Sass, B.; Homleid, M.; Hortal, M.; et al. The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Weather Rev. 2017, 145, 1919–1935. [Google Scholar] [CrossRef]
- Egli, S.; Maier, F.; Bendix, J.; Thies, B. Vertical distribution of microphysical properties in radiation fogs—A case study. Atmos. Res. 2015, 151, 130–145. [Google Scholar] [CrossRef]
- Stolaki, S.; Haeffelin, M.; Lac, C.; Dupont, J.C.; Elias, T.; Masson, V. Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study. Atmos. Res. 2015, 151, 146–161. [Google Scholar] [CrossRef]
- Poku, C.; Ross, A.N.; Blyth, A.M.; Hill, A.A.; Price, J.D. How important are aerosol–fog interactions for the successful modelling of nocturnal radiation fog? Weather 2019, 74, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Taufour, M.; Vié, B.; Augros, C.; Boudevillain, B.; Delanoë, J.; Delautier, G.; Ducrocq, V.; Lac, C.; Pinty, J.P.; Schwarzenböck, A. Evaluation of the two-moment scheme LIMA based on microphysical observations from the HyMeX campaign. Q. J. R. Meteorol. Soc. 2018, 144, 1398–1414. [Google Scholar] [CrossRef]
- Jahangir, E.; Libois, Q.; Couvreux, F.; Vié, B.; Saint-Martin, D. Uncertainty of SW cloud radiative effect in atmospheric models due to the parameterization of liquid cloud optical properties. J. Adv. Model. Earth Syst. 2021, 13, 1–23. [Google Scholar] [CrossRef]
- Khain, A.P.; Beheng, K.D.; Heymsfield, A.; Korolev, A.; Krichak, S.O.; Levin, Z.; Pinsky, M.; Phillips, V.; Prabhakaran, T.; Teller, A.; et al. Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys. 2015, 53, 247–322. [Google Scholar] [CrossRef]
- Barthlott, C.; Zarboo, A.; Matsunobu, T.; Keil, C. Importance of aerosols and shape of the cloud droplet size distribution for convective clouds and precipitation. Atmos. Chem. Phys. 2022, 22, 2153–2172. [Google Scholar] [CrossRef]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Caniaux, G.; Redelsperger, J.L.; Lafore, J.P. A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets. J. Atmos. Sci. 1994, 51, 2046–2074. [Google Scholar] [CrossRef]
- Kessler, E. On the distribution and continuity of water substance in atmospheric circulations. In Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1969; pp. 1–84. [Google Scholar]
- Khairoutdinov, M.; Kogan, Y. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Weather Rev. 2000, 128, 229–243. [Google Scholar] [CrossRef]
- Pinty, J.P.; Jabouille, P. A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations. In Proceedings of the Conference on Cloud Physics, Everett, WA, USA, 24 July 1998; pp. 217–220. [Google Scholar]
- Seity, Y.; Lac, C.; Bouyssel, F.; Riette, S.; Bouteloup, Y. Cloud and microphysical schemes in ARPEGE and AROME models. In Proceedings of the Workshop on Parametrization of Clouds and Precipitation (ECMWF), Reading, UK, 5–8 November 2012. [Google Scholar]
- Lascaux, F.; Richard, E.; Pinty, J.P. Numerical simulations of three different MAP IOPs and the associated microphysical processes. Q. J. R. Meteorol. Soc. 2006, 132, 1907–1926. [Google Scholar] [CrossRef]
- Ivarsson, K.I. Description of the OCND2-option in the ICE3 clouds- and stratiform condensation scheme in AROME. Aladin-Hirlam Newsl. 2015, 5, 83–87. [Google Scholar]
- Müller, M.; Homleid, M.; Ivarsson, K.I.; Køltzow, M.A.; Lindskog, M.; Midtbø, K.H.; Andrae, U.; Aspelien, T.; Berggren, L.; Bjørge, D.; et al. AROME-MetCoOp: A Nordic Convective-Scale Operational Weather Prediction Model. Weather Forecast. 2017, 32, 609–627. [Google Scholar] [CrossRef]
- Engdahl, B.J.K.; Thompson, G.; Bengtsson, L. Improving the representation of supercooled liquid water in the HARMONIE-AROME weather forecast model. Tellus A 2020, 72, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bougeault, P.; Mascart, P. The Meso–NH atmospheric simulation system: Scientific Documentation. In Part III: Physics; Technical Report; CNRS, Météo–France and Université Paul Sabatier: Toulouse, France, 2018. [Google Scholar]
- Flatau, P.J.; Tripoli, G.J.; Verlinde, J.; Cotton, W.R. CSU-RAMS Cloud Microphysics Module: General Theory and Code Documentation; Department of Atmospheric Science, Colorado State University: Fort Collins, CO, USA, 1989. [Google Scholar]
- Straka, J.M. Cloud and Precipitation Microphysics: Principles and Parameterizations; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Khain, A.P.; Pinsky, M. Physical Processes in Clouds and Cloud Modeling; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Wu, W.; McFarquhar, G.M. Statistical theory on the functional form of cloud particle size distributions. J. Atmos. Sci. 2018, 75, 2801–2814. [Google Scholar] [CrossRef]
- Bari, D.; Bergot, T.; El Khlifi, M. Numerical study of a coastal fog event over Casablanca, Morocco. Q. J. R. Meteorol. Soc. 2015, 141, 1894–1905. [Google Scholar] [CrossRef]
- Wurtz, J.; Bouniol, D.; Vié, B.; Lac, C. Evaluation of the AROME model’s ability to represent ice crystal icing using in situ observations from the HAIC 2015 field campaign. Q. J. R. Meteorol. Soc. 2021, 147, 2796–2817. [Google Scholar] [CrossRef]
- Bell, A.; Martinet, P.; Caumont, O.; Vié, B.; Delanoë, J.; Dupont, J.C.; Borderies, M. W-band Radar Observations for Fog Forecast Improvement: An Analysis of Model and Forward Operator Errors. Atmos. Meas. Tech. 2021, 14, 4929–4946. [Google Scholar] [CrossRef]
- Cohard, J.M.; Pinty, J.P. A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Q. J. R. Meteorol. Soc. 2000, 126, 1815–1842. [Google Scholar] [CrossRef]
- Geoffroy, O.; Brenguier, J.L.; Burnet, F. Parametric representation of the cloud droplet spectra for LES warm bulk microphysical schemes. Atmos. Chem. Phys. 2010, 10, 4835–4848. [Google Scholar] [CrossRef] [Green Version]
- Tampieri, F.; Tomasi, C. Size distribution models of fog and cloud droplets in terms of the modified gamma function. Tellus 1976, 28, 333–347. [Google Scholar] [CrossRef]
- Miles, N.L.; Verlinde, J.; Clothiaux, E.E. Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci. 2000, 57, 295–311. [Google Scholar] [CrossRef]
- Maier, F.; Bendix, J.; Thies, B. Simulating Z–LWC relations in natural fogs with radiative transfer calculations for future application to a cloud radar profiler. Pure Appl. Geophys. 2012, 169, 793–807. [Google Scholar] [CrossRef]
- Igel, A.L.; van den Heever, S.C. The role of the gamma function shape parameter in determining differences between condensation rates in bin and bulk microphysics schemes. Atmos. Chem. Phys. 2017, 17, 4599–4609. [Google Scholar] [CrossRef] [Green Version]
- Thies, B.; Egli, S.; Bendix, J. The influence of drop size distributions on the relationship between liquid water content and radar reflectivity in radiation fogs. Atmosphere 2017, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Kettler, T. Fog Forecasting in HARMONIE: A Case Study to Current Issues with the Overestimation of Fog in HARMONIE. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2020. [Google Scholar]
- Kunkel, B.A. Parameterization of droplet terminal velocity and extinction coefficient in fog models. J. Appl. Meteorol. Climatol. 1984, 23, 34–41. [Google Scholar] [CrossRef]
- Stoelinga, M.T.; Warner, T.T. Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. J. Appl. Meteorol. 1999, 38, 385–404. [Google Scholar] [CrossRef]
- Kindlundh, E. Verification of HARMONIE-AROME, ECMWF-IFS and WRF: Visibility and Cloud Base Height. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2020. [Google Scholar]
- WMO’s International Cloud Atlas. Available online: https://cloudatlas.wmo.int/en/useful-concepts.html (accessed on 29 August 2022).
- Boutle, I.; Price, J.; Kudzotsa, I.; Kokkola, H.; Romakkaniemi, S. Aerosol–fog interaction and the transition to well-mixed radiation fog. Atmos. Chem. Phys. 2018, 18, 7827–7840. [Google Scholar] [CrossRef] [Green Version]
- Pinsky, M.B.; Khain, A.P. Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Q. J. R. Meteorol. Soc. 2002, 128, 501–533. [Google Scholar] [CrossRef]
- Bergot, T.; Terradellas, E.; Cuxart, J.; Mira, A.; Liechti, O.; Mueller, M.; Nielsen, N.W. Intercomparison of single-column numerical models for the prediction of radiation fog. J. Appl. Meteorol. Climatol. 2007, 46, 504–521. [Google Scholar] [CrossRef]
- Bouteloup, Y.; Seity, Y.; Bazile, E. Description of the sedimentation scheme used operationally in all Météo–France NWP models. Tellus A 2011, 63, 300–311. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- de Rooy, W. The fog above sea problem in Harmonie: Part 1 Analysis. Aladin-Hirlam Newsl. 2014, 2, 9–15. [Google Scholar]
- de Rooy, W. The fog above sea problem in Harmonie Part II: Experiences with the RACMO turbulence scheme. Aladin-Hirlam Newsl. 2014, 3, 59–68. [Google Scholar]
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Rontu, L.; Gleeson, E.; Martin Perez, D.; Nielsen, K.P.; Toll, V. Sensitivity of radiative fluxes to aerosols in the ALADIN-HIRLAM numerical weather prediction system. Atmosphere 2020, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Rontu, L.; Pietikäinen, J.P.; Martin Perez, D. Renewal of aerosol data for ALADIN-HIRLAM radiation parametrizations. Adv. Sci. Res. 2019, 16, 129–136. [Google Scholar] [CrossRef]
- Morrison, H.; Grabowski, W.W. Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci. 2007, 64, 2839–2861. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Vié, B.; Pinty, J.P.; Berthet, S.; Leriche, M. LIMA (v1. 0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei. Geosci. Model Dev. 2016, 9, 567–586. [Google Scholar] [CrossRef]
- Tsiringakis, A.; Frogner, I.L.; de Rooy, W.C.; Andrae, U.; Hally, A.; Contreras Osorio, S.; van der Veen, S.; Barkmeijer, J. An Update to the Stochastically Perturbed Parametrizations Scheme of HarmonEPS. 2022. In preparation. Available online: https://www.ecmwf.int/sites/default/files/special_projects/2019/spsehlam-2019-finalreport.pdf (accessed on 10 November 2022).
EXP | CDNC Profile | Distribution Parameters (, ) | Other |
---|---|---|---|
REF_VAR | Variable CDNC | Effective values : | |
, | |||
CONST_DEFAULT | Constant CDNC | sea: , | None |
land: , | |||
CONST_A2N1 | Constant CDNC | sea: , | None |
land: , | |||
CONST_SEA07 | Constant CDNC | sea: , | None |
land: , | |||
VAR_CDNC_RED | Variable CDNC | Effective values : | |
, | |||
VAR_NOSED | Variable CDNC | Effective values : | , |
, | no sedimentation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras Osorio, S.; Martín Pérez, D.; Ivarsson, K.-I.; Nielsen, K.P.; de Rooy, W.C.; Gleeson, E.; McAufield, E. Impact of the Microphysics in HARMONIE-AROME on Fog. Atmosphere 2022, 13, 2127. https://doi.org/10.3390/atmos13122127
Contreras Osorio S, Martín Pérez D, Ivarsson K-I, Nielsen KP, de Rooy WC, Gleeson E, McAufield E. Impact of the Microphysics in HARMONIE-AROME on Fog. Atmosphere. 2022; 13(12):2127. https://doi.org/10.3390/atmos13122127
Chicago/Turabian StyleContreras Osorio, Sebastián, Daniel Martín Pérez, Karl-Ivar Ivarsson, Kristian Pagh Nielsen, Wim C. de Rooy, Emily Gleeson, and Ewa McAufield. 2022. "Impact of the Microphysics in HARMONIE-AROME on Fog" Atmosphere 13, no. 12: 2127. https://doi.org/10.3390/atmos13122127
APA StyleContreras Osorio, S., Martín Pérez, D., Ivarsson, K. -I., Nielsen, K. P., de Rooy, W. C., Gleeson, E., & McAufield, E. (2022). Impact of the Microphysics in HARMONIE-AROME on Fog. Atmosphere, 13(12), 2127. https://doi.org/10.3390/atmos13122127