Evaluating Agronomic Onset Definitions in Senegal through Crop Simulation Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Meteorological Data
2.2. Rainfall-Based Onset Definitions
2.2.1. ANACIM’s Onset Definition
2.2.2. Bombardi’s Onset Definition for Sub-Seasonal Onset Prediction
2.3. Ex Ante Crop Simulation Experiments
2.3.1. Crop Modeling Setup and Validation
2.3.2. Soil-Moisture-Based Onsets
2.3.3. Determining Semi-Optimal Planting Dates
2.4. Evaluation of Onset Definitions
3. Results and Discussion
3.1. Bambey (CNRA)
3.2. Nioro du Rip (NRIP)
3.3. Sinthiou Malème (SINT)
3.4. Kolda (KOLD)
3.5. Limitations and Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). Senegal: Country Fact Sheet on Food and Agriculture Trends; FAO: Rome, Italy, 2015. [Google Scholar]
- Ouedraogo, I.; Diouf, N.S.; Ablouka, G.; Zougmoré, R.B.; Whitbread, A. Utility and Triggers in Uptake of Agricultural Weather and Climate Information Services in Senegal, West Africa. Atmosphere 2021, 12, 1515. [Google Scholar] [CrossRef]
- D’Alessandro, S.; Fall, A.A.; Grey, G.; Simpkin, S.; Wane, A. Senegal. Agricultural Sector Risk Assessment; World Bank Group: Washington, DC, USA, 2015. [Google Scholar]
- Ingram, K.; Roncoli, M.; Kirshen, P. Opportunities and constraints for farmers of West Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agric. Syst. 2002, 74, 331–349. [Google Scholar] [CrossRef]
- Sultan, B.; Baron, C.; Dingkuhn, M.; Sarr, B.; Janicot, S. Agricultural impacts of large-scale variability of the West African monsoon. Agric. For. Meteorol. 2005, 128, 93–110. [Google Scholar] [CrossRef]
- Dodd, D.E.S.; Jolliffe, I.T. Early detection of the start of the wet season in semiarid tropical climates of western Africa. Int. J. Climatol. 2001, 21, 1251–1262. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Sarria-dodd, D.E. Early detection of the start of the wet season in tropical climates. Int. J. Climatol. 1994, 14, 71–76. [Google Scholar] [CrossRef]
- Roudier, P.; Muller, B.; d’Aquino, P.; Roncoli, C.; Soumaré, M.A.; Batté, L.; Sultan, B. The role of climate forecasts in smallholder agriculture: Lessons from participatory research in two communities in Senegal. Clim. Risk Manag. 2014, 2, 42–55. [Google Scholar] [CrossRef]
- Chiputwa, B.; Wainaina, P.; Nakelse, T.; Makui, P.; Zougmoré, R.B.; Ndiaye, O.; Minang, P.A. Transforming climate science into usable services: The effectiveness of co-production in promoting uptake of climate information by smallholder farmers in Senegal. Clim. Serv. 2020, 20, 100203. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Diouf, N.S.; Ouédraogo, M.; Ndiaye, O.; Zougmoré, R.B. Closing the gap between climate information producers and users: Assessment of needs and uptake in Senegal. Climate 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, R.G.; Bain, C.L.; Knippertz, P.; Marsham, J.H.; Parker, D.J. The West African monsoon onset: A concise comparison of definitions. J. Clim. 2015, 28, 8673–8694. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Moron, V.; Goodnight, J.S. Detection, variability, and predictability of monsoon onset and withdrawal dates: A review. Int. J. Climatol. 2020, 40, 641–667. [Google Scholar] [CrossRef]
- Marteau, R.; Sultan, B.; Moron, V.; Alhassane, A.; Baron, C.; Traoré, S.B. The onset of the rainy season and farmers’ sowing strategy for pearl millet cultivation in Southwest Niger. Agric. For. Meteorol. 2011, 151, 1356–1369. [Google Scholar] [CrossRef] [Green Version]
- Marteau, R.; Moron, V.; Philippon, N. Spatial coherence of monsoon onset over western and central Sahel (1950–2000). J. Clim. 2009, 22, 1313–1324. [Google Scholar] [CrossRef] [Green Version]
- Ilesanmi, O.O. An empirical formulation of the onset, advance, and retreat of rainfall in Nigeria. J. Trop. Geogr. 1972, 34, 17–24. [Google Scholar]
- Ndomba, P.M. Development of rainfall curves for crops planting dates: A case study of Pangani River Basin in Tanzania. Nile Basin Water Sci. Eng. J. 2010, 3, 13–27. [Google Scholar]
- Bussmann, A.; Elagib, N.A.; Fayyad, M.; Ribbe, L. Sowing date determinants for Sahelian rainfed agriculture in the context of agricultural policies and water management. Land Use Policy 2016, 52, 316–328. [Google Scholar] [CrossRef]
- Dunning, C.M.; Black, E.C.; Allan, R.P. The onset and cessation of seasonal rainfall over Africa. J. Geophys. Res. Atmos. 2016, 121, 11405–11424. [Google Scholar] [CrossRef] [Green Version]
- Bombardi, R.J.; Pegion, K.V.; Kinter, J.L.; Cash, B.A.; Adams, J.M. Sub-seasonal predictability of the onset and demise of the rainy season over monsoonal regions. Front. Earth Sci. 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Stern, R.; Dennett, M.; Garbutt, D. The start of the rains in West Africa. J. Climatol. 1981, 1, 59–68. [Google Scholar] [CrossRef]
- Sivakumar, M. Predicting rainy season potential from the onset of rains in Southern Sahelian and Sudanian climatic zones of West Africa. Agric. For. Meteorol. 1988, 42, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Omotosho, J.B.; Balogun, A.; Ogunjobi, K. Predicting monthly and seasonal rainfall, onset and cessation of the rainy season in West Africa using only surface data. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 865–880. [Google Scholar] [CrossRef]
- Raes, D.; Sithole, A.; Makarau, A.; Milford, J. Evaluation of first planting dates recommended by criteria currently used in Zimbabwe. Agric. For. Meteorol. 2004, 125, 177–185. [Google Scholar] [CrossRef]
- Kipkorir, E.C.; Raes, D.; Bargerei, R.J.; Mugalavai, E.M. Evaluation of two risk assessment methods for sowing maize in Kenya. Agric. For. Meteorol. 2007, 144, 193–199. [Google Scholar] [CrossRef]
- Mugalavai, E.M.; Kipkorir, E.C.; Raes, D.; Rao, M.S. Analysis of rainfall onset, cessation and length of growing season for western Kenya. Agric. For. Meteorol. 2008, 148, 1123–1135. [Google Scholar] [CrossRef]
- Siebert, A.; Ryser, P.; Ndiaye, D.; Diop, L.; Mbengue, A.; Sal, A.; Konte, O.; Ndiaye, O.; Trzaska, S.; Robertson, A. A Multi-Model Approach to Forecasting Seasonal Rainfall Characteristics in Senegal. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 13–17 December 2021; pp. 55–0813. [Google Scholar]
- Salack, S.; Muller, B.; Gaye, A.T.; Hourdin, F.; Cisse, N. Analyses multi-échelles des pauses pluviométriques au Niger et au Sénégal. Science et changements planétaires / Sécheresse 2012, 23, 3–13. [Google Scholar]
- Sivakumar, M. ‘Agroclimatic aspects of rainfed agriculture in the Sudano-Sahelian zone’, in Soil, Crop and Water Management Systems for Rainfed Agriculture in the Sudano-Sahelian zone. Proceedings of an International Workshop ICRISAT Sahelian Center, Niamey, Niger, 7–11 January 1987. [Google Scholar]
- Sane, Y.; Panthou, G.; Bodian, A.; Vischel, T.; Lebel, T.; Dacosta, H.; Quantin, G.; Wilcox, C.; Ndiaye, O.; Diongue-Niang, A.J.N.H.; et al. Intensity–duration–frequency (IDF) rainfall curves in Senegal. Nat. Hazards Earth Syst. Sci. 2018, 18, 1849–1866. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, M. Empirical analysis of dry spells for agricultural applications in West Africa. J. Clim. 1992, 5, 532–539. [Google Scholar] [CrossRef]
- Omotosho, J.B. Onset of thunderstorms and precipitation over northern Nigeria. Int. J. Climatol. 1990, 10, 849–860. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Carvalho, L. IPCC global coupled model simulations of the South America monsoon system. Clim. Dyn. 2009, 33, 893–916. [Google Scholar] [CrossRef] [Green Version]
- Liebmann, B.; Marengo, J. Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J. Clim. 2001, 14, 4308–4318. [Google Scholar] [CrossRef]
- Singh, B.; Robertson, A.W.; Trzaska, S.; Ndiaye, O.; Konté, O. Boreal summer subseasonal predictability of rainfall and monsoon onset over Senegal. In Proceedings of the AGU Fall Meeting Abstracts, Virtually, 1–17 December 2020; p. A188-0005. [Google Scholar]
- Agence Nationale de la Statistique et de la Démographie. Bulletin Mensuel des Statistiques Economiques de 2018; Division des Statistiques Economiques Ministère de l’Economie, des Finances et du Plan: Dakar, Senegal, 2018.
- Ndiaye, M.; Adam, M.; Ganyo, K.K.; Guissé, A.; Cissé, N.; Muller, B. Genotype-environment interaction: Trade-offs between the agronomic performance and stability of dual-purpose sorghum (Sorghum bicolor L. Moench) genotypes in Senegal. Agronomy 2019, 9, 867. [Google Scholar] [CrossRef] [Green Version]
- Araya, A.; Jha, P.; Zambreski, Z.; Faye, A.; Ciampitti, I.; Min, D.; Gowda, P.; Singh, U.; Prasad, P. Evaluating crop management options for sorghum, pearl millet and peanut to minimize risk under the projected midcentury climate scenario for different locations in Senegal. Clim. Risk Manag. 2022, 36, 100436. [Google Scholar] [CrossRef]
- Jha, P.K.; Araya, A.; Stewart, Z.P.; Faye, A.; Traore, H.; Middendorf, B.; Prasad, P. Projecting potential impact of COVID-19 on major cereal crops in Senegal and Burkina Faso using crop simulation models. Agric. Syst. 2021, 190, 103107. [Google Scholar] [CrossRef] [PubMed]
- Ganyo, K.K.; Muller, B.; Guissé, A.; Adam, M. Fertilization strategies based on climate information to enhance food security through improved dryland cereals production. In Handbook of Climate Change Resilience; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–18. [Google Scholar]
- Hoogenboom, G.; Jones, J.; Porter, C.; Wilkens, P.; Boote, K.; Hunt, L.; Tsuji, G. Decision Support System for Agrotechnology Transfer Version 4.5. Volume 1: Overview; University of Hawaii: Honolulu, HI, USA, 2010. [Google Scholar]
- White, J.; Alagarswamy, G.; Ottman, M.J.; Porter, C.; Singh, U.; Hoogenboom, G. An overview of CERES–sorghum as implemented in the cropping system model version 4.5. Agron. J. 2015, 107, 1987–2002. [Google Scholar] [CrossRef] [Green Version]
- Ganyo, K.K.; Muller, B.; Ndiaye, M.; Gaglo, E.K.; Guissé, A.; Adam, M. Defining fertilization strategies for sorghum (Sorghum bicolor (L.) Moench) production under Sudano-Sahelian conditions: Options for late basal fertilizer application. Agronomy 2019, 9, 697. [Google Scholar] [CrossRef] [Green Version]
- Ganyo, K.K. Etude et Modélisation des Réponses de Variétés de Sorgho (Sorghum bicolor L. Moench) à des Stratégies Contrastées D’apports D’intrants. Ph.D. Thesis, Universite Chekh Anta Diop De Dakar, Dakar, Senegal, 2018. [Google Scholar]
- Liu, S.; Yang, J.; Zhang, X.; Drury, C.; Reynolds, W.; Hoogenboom, G. Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China. Agric. Water Manag. 2013, 123, 32–44. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J.-Y.; Liu, S.; Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 2014, 127, 81–89. [Google Scholar] [CrossRef]
- Li, Z.T.; Yang, J.; Drury, C.; Hoogenboom, G. Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agric. Syst. 2015, 135, 90–104. [Google Scholar] [CrossRef]
- Akinseye, F.M.; Ajeigbe, H.A.; Traore, P.C.; Agele, S.O.; Zemadim, B.; Whitbread, A. Improving sorghum productivity under changing climatic conditions: A modelling approach. Field Crops Res. 2020, 246, 107685. [Google Scholar] [CrossRef]
- Dingkuhn, M.; Singh, B.; Clerget, B.; Chantereau, J.; Sultan, B. Past, present and future criteria to breed crops for water-limited environments in West Africa. Agric. Water Manag. 2006, 80, 241–261. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.; Dzotsi, K.; Hoogenboom, G.; Traoré, P.; Porter, C.; Rattunde, H.; Nebie, B.; Leiser, W.L.; Weltzien, E.; Jones, J.W. Modelling varietal differences in response to phosphorus in West African sorghum. Eur. J. Agron. 2018, 100, 35–43. [Google Scholar] [CrossRef]
- Sanon, M.; Hoogenboom, G.; Traoré, S.; Sarr, B.; Garcia, A.G.y.; Somé, L.; Roncoli, C. Photoperiod sensitivity of local millet and sorghum varieties in West Africa. NJAS: Wagening. J. Life Sci. 2014, 68, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Diop, M. A propos de la durée de la saison des pluies au Sénégal. Sci. Et Chang. Planétaires/Sécheresse 1996, 7, 7–15. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Mangiafico, S.S. Summary and Analysis of Extension Program Evaluation in R, Version 1.19.10. 2016. Available online: http://rcompanion.org/handbook/ (accessed on 26 August 2022).
- Ritchie, J.T. Soil water balance and plant water stress. In Understanding Options for Agricultural Production; Springer: Berlin/Heidelberg, Germany, 1998; pp. 41–54. [Google Scholar]
- Han, E.; Ines, A.V.; Koo, J. Development of a 10-km resolution global soil profile dataset for crop modeling applications. Environ. Model. Softw. 2019, 119, 70–83. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
Onset Definition | Mean | Stdev | Min | Max | Percentiles | |||||
---|---|---|---|---|---|---|---|---|---|---|
10th | 25th | 50th | 75th | 90th | ||||||
CNRA | ANACIM | 667 | 233 | 276 | 1088 | 384 | 502 | 626 | 815 | 999 |
BM | 697 | 239 | 230 | 1118 | 384 | 512 | 673 | 879 | 1003 | |
AutoP(151) | 724 | 229 | 337 | 1087 | 400 | 504 | 753 | 895 | 1024 | |
AutoP(166) | 731 | 232 | 337 | 1087 | 400 | 504 | 780 | 911 | 1024 | |
Optimal | 776 | 265 | 337 | 1320 | 426 | 522 | 793 | 982 | 1075 | |
NRIP | ANACIM | 1822 | 312 | 1120 | 2274 | 1458 | 1623 | 1808 | 2104 | 2180 |
BM | 1838 | 320 | 1084 | 2306 | 1394 | 1646 | 1870 | 2100 | 2212 | |
AutoP(151) | 1846 | 302 | 1019 | 2270 | 1403 | 1692 | 1883 | 2087 | 2189 | |
AutoP(166) | 1845 | 325 | 1019 | 2257 | 1360 | 1692 | 1883 | 2089 | 2210 | |
Optimal | 1971 | 298 | 1130 | 2371 | 1550 | 1849 | 2032 | 2179 | 2319 | |
SINT | ANACIM | 1995 | 501 | 998 | 3323 | 1345 | 1685 | 2018 | 2290 | 2621 |
BM | 2082 | 437 | 1291 | 3424 | 1558 | 1857 | 2027 | 2256 | 2579 | |
AutoP(151) | 2073 | 424 | 1329 | 3032 | 1583 | 1754 | 2100 | 2341 | 2550 | |
AutoP(166) | 2023 | 373 | 1355 | 2929 | 1614 | 1796 | 1992 | 2222 | 2379 | |
Optimal | 2197 | 428 | 1391 | 3519 | 1684 | 1941 | 2176 | 2400 | 2567 | |
KOLD | ANACIM | 2331 | 567 | 1205 | 3861 | 1664 | 1997 | 2353 | 2590 | 3152 |
BM | 2377 | 521 | 1385 | 3856 | 1948 | 2007 | 2328 | 2556 | 3190 | |
AutoP(151) | 2336 | 479 | 1206 | 3513 | 1959 | 2062 | 2291 | 2428 | 3076 | |
AutoP(166) | 2265 | 521 | 1206 | 3838 | 1753 | 2009 | 2161 | 2417 | 3057 | |
Optimal | 2384 | 529 | 1206 | 3879 | 1960 | 2091 | 2342 | 2458 | 3171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, E.; Faye, A.; Diop, M.; Singh, B.; Ganyo, K.K.; Baethgen, W. Evaluating Agronomic Onset Definitions in Senegal through Crop Simulation Modeling. Atmosphere 2022, 13, 2122. https://doi.org/10.3390/atmos13122122
Han E, Faye A, Diop M, Singh B, Ganyo KK, Baethgen W. Evaluating Agronomic Onset Definitions in Senegal through Crop Simulation Modeling. Atmosphere. 2022; 13(12):2122. https://doi.org/10.3390/atmos13122122
Chicago/Turabian StyleHan, Eunjin, Adama Faye, Mbaye Diop, Bohar Singh, Komla Kyky Ganyo, and Walter Baethgen. 2022. "Evaluating Agronomic Onset Definitions in Senegal through Crop Simulation Modeling" Atmosphere 13, no. 12: 2122. https://doi.org/10.3390/atmos13122122
APA StyleHan, E., Faye, A., Diop, M., Singh, B., Ganyo, K. K., & Baethgen, W. (2022). Evaluating Agronomic Onset Definitions in Senegal through Crop Simulation Modeling. Atmosphere, 13(12), 2122. https://doi.org/10.3390/atmos13122122