Climate Patterns and Their Influence in the Cordillera Blanca, Peru, Deduced from Spectral Analysis Techniques
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.2. Data Series Preprocessing
3.3. Spectral Analysis
4. Results
4.1. Analysis of the Spectral Periodicity
- 27 to 30 days (3 months).
- 46 to 52 days (almost a month and a half).
- 90 days (3 months).
- 479 days (1 years and 3 months).
- Between 548 and 560 days (1 year and 6 months).
- 635 days (1 year and 9 months).
- 1095 days (3 years).
- 1460 days (4 years).
- 1650 days (4.5 years).
- Between 2000 and 2555 days (5.6 to 7 years).
- Between 4015 and 4380 days (11 to 12 years).
- Between 5110 and 6570 days (14 to 18 years).
4.2. Spectral Analysis of Main Climatic Patterns
4.3. Results Synthesis
5. Discussion
5.1. Intra-Annual Periodicities
5.2. Interannual Periodicities
5.3. Long Term Periodicities
5.4. Comparison with Other Regions: Cases of Study
5.5. Shortcomings
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beer, J.; Mende, W.; Stellmacher, R. The Role of the Sun in Climate Forcing. Quat. Sci. Rev. 2000, 19, 403–415. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, T.; Chang, F.; Algeo, T.J.; Clift, P.D.; Bretschneider, L.; Lu, Z.; Zhu, X.; Frank, M.; Sauer, P.E.; et al. Rapid Precipitation Changes in the Tropical West Pacific Linked to North Atlantic Climate Forcing during the Last Deglaciation. Quat. Sci. Rev. 2018, 197, 288–306. [Google Scholar] [CrossRef]
- Tilmes, S.; Hodzic, A.; Emmons, L.K.; Mills, M.J.; Gettelman, A.; Kinnison, D.E.; Park, M.; Lamarque, J.-F.; Vitt, F.; Shrivastava, M.; et al. Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2). J. Adv. Model. Earth Syst. 2019, 11, 4323–4351. [Google Scholar] [CrossRef]
- Richardson, T.B.; Forster, P.M.; Smith, C.J.; Maycock, A.C.; Wood, T.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Hodnebrog, Ø.; et al. Efficacy of Climate Forcings in PDRMIP Models. J. Geophys. Res. Atmos. 2019, 124, 12824–12844. [Google Scholar] [CrossRef]
- O’Neel, S.; McNeil, C.; Sass, L.C.; Florentine, C.; Baker, E.H.; Peitzsch, E.; McGrath, D.; Fountain, A.G.; Fagre, D. Reanalysis of the US Geological Survey Benchmark Glaciers: Long-Term Insight into Climate Forcing of Glacier Mass Balance. J. Glaciol. 2019, 65, 850–866. [Google Scholar] [CrossRef]
- Scott, R.C.; Nicolas, J.P.; Bromwich, D.H.; Norris, J.R.; Lubin, D. Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt. J. Clim. 2019, 32, 665–684. [Google Scholar] [CrossRef]
- Takano, Y.; Ito, T.; Deutsch, C. Projected Centennial Oxygen Trends and Their Attribution to Distinct Ocean Climate Forcings. Glob. Biogeochem. Cycles 2018, 32, 1329–1349. [Google Scholar] [CrossRef]
- Garreaud, R.D. The Andes Climate and Weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef]
- Veblen, T.; Young, K.; Orme, A. The Physical Geography of South America, 1st ed.; Oxford University Press: New York, NY, USA, 2007; ISBN 978-0-19-531341-3. [Google Scholar]
- Samanta, D.; Karnauskas, K.B.; Goodkin, N.F. Tropical Pacific SST and ITCZ Biases in Climate Models: Double Trouble for Future Rainfall Projections? Geophys. Res. Lett. 2019, 46, 2242–2252. [Google Scholar] [CrossRef]
- Williams, I.N.; Patricola, C.M. Diversity of ENSO Events Unified by Convective Threshold Sea Surface Temperature: A Nonlinear ENSO Index. Geophys. Res. Lett. 2018, 45, 9236–9244. [Google Scholar] [CrossRef]
- IPCC; Arias, P.A.; Allan, R.P.; Armour, K.; Barimalala, R.; Canadell, J.G.; Cassou, C.; Cherchi, A.; Collins, W.; Corti, S.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2021; p. 2409. [Google Scholar]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.S.; Di Luca, A.; Faria, S.H.; Gorodetskaya, I.V.; et al. An Update of IPCC Climate Reference Regions for Subcontinental Analysis of Climate Model Data: Definition and Aggregated Datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- IPCC; Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2013; p. 1585. [Google Scholar]
- Sulca, J.; Takahashi, K.; Espinoza, J.-C.; Vuille, M.; Lavado-Casimiro, W. Impacts of Different ENSO Flavors and Tropical Pacific Convection Variability (ITCZ, SPCZ) on Austral Summer Rainfall in South America, with a Focus on Peru. Int. J. Climatol. 2018, 38, 420–435. [Google Scholar] [CrossRef]
- Jones, C.; Carvalho, L.M.V. The Influence of the Atlantic Multidecadal Oscillation on the Eastern Andes Low-Level Jet and Precipitation in South America. Npj Clim. Atmospheric. Sci. 2018, 1, 40. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; et al. Climate Impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Bauer, E.; Claussen, M.; Brovkin, V.; Huenerbein, A. Assessing Climate Forcings of the Earth System for the Past Millennium: Climate Simulations for Past Millennium. Geophys. Res. Lett. 2003, 30, 1–9. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Zhao, X.; Soon, W.; Velasco Herrera, V.M. Evidence for Solar Modulation on the Millennial-Scale Climate Change of Earth. Universe 2020, 6, 153. [Google Scholar] [CrossRef]
- Zhu, F.R.; Jia, H.Y. Lomb–Scargle Periodogram Analysis of the Periods around 5.5 Year and 11 Year in the International Sunspot Numbers. Astrophys. Space Sci. 2018, 363, 138. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pignalberi, A.; Pietrella, M. On the Influence of Solar Activity on the Mid-Latitude Sporadic E Layer. J. Space Weather Space Clim. 2015, 5, A31. [Google Scholar] [CrossRef]
- Akdi, Y.; Gölveren, E.; Ünlü, K.D.; Yücel, M.E. Modeling and Forecasting of Monthly PM2.5 Emission of Paris by Periodogram-Based Time Series Methodology. Environ. Monit. Assess. 2021, 193, 622. [Google Scholar] [CrossRef] [PubMed]
- Aldegunde, J.A.Á.; Fernández-Sánchez, A.; Saba, M.; Bolaños, E.Q.; Caraballo, L.R. Spatiotemporal Analysis of PM2.5 Concentrations on the Incidence of Childhood Asthma in Developing Countries: Case Study of Cartagena de Indias, Colombia. Atmosphere 2022, 13, 1383. [Google Scholar] [CrossRef]
- Froyland, G.; Giannakis, D.; Lintner, B.R.; Pike, M.; Slawinska, J. Spectral Analysis of Climate Dynamics with Operator-Theoretic Approaches. Nat. Commun. 2021, 12, 6570. [Google Scholar] [CrossRef] [PubMed]
- Akdi, Y.; Ünlü, K.D. Periodicity in Precipitation and Temperature for Monthly Data of Turkey. Theor. Appl. Climatol. 2021, 143, 957–968. [Google Scholar] [CrossRef]
- Lamy, F.; Hebbeln, D.; Röhl, U.; Wefer, G. Holocene Rainfall Variability in Southern Chile: A Marine Record of Latitudinal Shifts of the Southern Westerlies. Earth Planet. Sci. Lett. 2001, 185, 369–382. [Google Scholar] [CrossRef]
- Warner, R.M.; Neumann, P.G. SPAN: An Interactive BASIC Program for Spectral Analysis of Time-Series Data. Behav. Res. Methods Instrum. 1980, 12, 389–390. [Google Scholar] [CrossRef][Green Version]
- Fernández-Sánchez, A.; Martín-Chivelet, J. Revisión de la estratigrafía del δ 18 O en sondeos de hielo de glaciares de los Andes Centrales: Implicaciones para la variabilidad climática del Holoceno. In Proceedings of the Geotemas, Huelva, Spain, 12–14 September 2016; Volume 16, pp. 565–568. [Google Scholar]
- Canedo-Rosso, C.; Uvo, C.B.; Berndtsson, R. Precipitation Variability and Its Relation to Climate Anomalies in the Bolivian Altiplano. Int. J. Climatol. 2018, 39, 2096–2107. [Google Scholar] [CrossRef]
- Ilyes, C.; Wendo, V.A.J.A.; Flores Carpio, Y.; Szucs, P. Differences and Similarities between Precipitation Patterns of Different Climates. Acta Geod. Geophys. 2021, 56, 781–800. [Google Scholar] [CrossRef]
- Eguiguren-Velepucha, P.A.; Chamba, J.A.M.; Aguirre Mendoza, N.A.; Ojeda-Luna, T.L.; Samaniego-Rojas, N.S.; Furniss, M.J.; Howe, C.; Aguirre Mendoza, Z.H. Tropical Ecosystems Vulnerability to Climate Change in Southern Ecuador. Trop. Conserv. Sci. 2016, 9, 194008291666800. [Google Scholar] [CrossRef]
- Deb, J.; Phinn, S.; Butt, N.; McAlpine, C. Climate Change Impacts on Tropical Forests. For. Res. Inst. Malays. 2018, 30, 182–194. [Google Scholar]
- INAIGEM. Informe de la Situación de los Glaciares y Ecosistemas de Montaña en el Perú; Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña del Perú: Huaraz, Peru, 2017; p. 124. [Google Scholar]
- Ames Marquez, A.; Francou, B. Cordillera Blanca: Glaciares En La Historia. Bull. Inst. Fr. Etudes Andin. 1995, 24, 37–64. [Google Scholar] [CrossRef]
- SENAMHI. Climas del Perú: Mapa de Clasificación Climática Nacional; Servicio Nacional de Meteorología e HIdrología del Perú: Lima, Peru, 2020; p. 70. [Google Scholar]
- Kaser, G.; Osmaston, H. Tropical Glaciers, 1st ed.; International Hydrology Series; Cambridge University Press: Cambridge, UK, 2002; ISBN 0-521-63333-8. [Google Scholar]
- Autoridad Nacional del Agua; Unidad de Glaciología y Recursos Hídricos. Inventario nacional de glaciares y lagunas: Lagunas; Autoridad Nacional del Agua: Huaraz, Peru, 2014; p. 21. [Google Scholar]
- Instituto Nacional de Estadística e Informática. INEI Censo de Población y Vivienda: Ancash. 2018. Available online: www.inei.gob.pe (accessed on 3 December 2022).
- Cano, A.; Mendoza, W.; Castillo, S.; Morales, M.; La Torre, M.I.; Aponte, H.; Delgado, A.; Valencia, N.; Vega, N. Flora y vegetación de suelos crioturbados y hábitats asociados en la Cordillera Blanca, Ancash, Perú. Rev. Peru. Biol. 2011, 17, 095–0103. [Google Scholar] [CrossRef][Green Version]
- NOAA Oceanic El NIño Index. Available online: https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt (accessed on 20 February 2022).
- Huang, X.; Zhou, T.; Dai, A.; Li, H.; Li, C.; Chen, X.; Lu, J.; Von Storch, J.-S.; Wu, B. South Asian Summer Monsoon Projections Constrained by the Interdecadal Pacific Oscillation. Sci. Adv. 2020, 6, eaay6546. [Google Scholar] [CrossRef]
- Marrari, M.; Piola, A.R.; Valla, D. Variability and 20-Year Trends in Satellite-Derived Surface Chlorophyll Concentrations in Large Marine Ecosystems around South and Western Central America. Front. Mar. Sci. 2017, 4, 372. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Durán-quesada, A.M.; Amador, J.A.; Alfaro, E.J. The Caribbean Low-level Jet, the Inter-tropical Convergence Zone and Precipitation Patterns in the Intra-americas Sea: A Proposed Dynamical Mechanism. Geogr. Ann. Ser. Phys. Geogr. 2015, 97, 41–59. [Google Scholar] [CrossRef]
- Lee, H.-T. NOAA CDR Program NOAA Climate Data Record (CDR) of Daily Outgoing Longwave Radiation (OLR), Version 1.2 . 2014. [Google Scholar]
- Reason, C.J.C. The Bolivian, Botswana, and Bilybara Highs and Southern Hemisphere Drought/Floods. Geophys. Res. Lett. 2016, 43, 1280–1286. [Google Scholar] [CrossRef]
- Jones, C. Recent Changes in the South America Low-Level Jet. Npj Clim. Atmos. Sci. 2019, 2, 20. [Google Scholar] [CrossRef]
- Sierra, J.P.; Arias, P.A.; Durán-Quesada, A.M.; Tapias, K.A.; Vieira, S.C.; Martínez, J.A. The Choco Low-level Jet: Past, Present and Future. Clim. Dyn. 2021, 56, 2667–2692. [Google Scholar] [CrossRef]
- Xue, Y.; Higgins, W.; Kousky, V. Influences of the Madden Julian Oscillations on Temperature and Precipitation in North America during ENSO-Neutral and Weak ENSO Winters. In Proc. Workshop on Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2 Week to 2 Month) Time Scales; NASA/Goddard Space Flight Center: Greenbelt, MD, USA, 2002; p. 4. [Google Scholar]
- Polanco Martínez, J. Aplicación de Técnicas Estadísticas en el Estudio de Fenómenos Ambientales y Ecosistémicos; Universidad del País Vasco, Facultad de Ciencia y Tecnología, Departamento de Física Aplicada II. Leioa: Vizcaya, Spain, 2011. [Google Scholar]
- Paulhus, J.L.H.; Kohler, M.A. Interpolation of Missing Precipitation Records. Mon. Weather Rev. 1952, 80, 129–133. [Google Scholar] [CrossRef]
- Enders, C.K. Methodology in the social sciences. In Applied Missing Data Analysis, 1st ed.; Guilford Press: New York, NY, USA, 2010; ISBN 978-1-60623-639-0. [Google Scholar]
- RStudio Team. Integrated Development for R, PBC; RStudio Team: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 1 July 2021).
- James, G.; Written, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R, 2nd ed.; Springer Science and Business Media: New York, NY, USA, 2021; Volume 6, ISBN 978-1-07-161417-4. [Google Scholar]
- Warner, R.M. Spectral Analysis of Time-Series Data (Methodology in the Social Sciences), 1st ed.; Guilford Press: New York, USA, 1999; ISBN 978-1-57230-338-6. [Google Scholar]
- Li, L.; Li, K.; Liu, C.; Liu, C. Comparison of Detrending Methods in Spectral Analysis of Heart Rate Variability. Res. J. Appl. Sci. Eng. Technol. 2011, 3, 1014–1021. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Miyahara, H.; Aono, Y.; Kataoka, R. Searching for the 27-Day Solar Rotational Cycle in Lightning Events Recorded in Old Diaries in Kyoto from the 17th to 18th Century. Ann. Geophys. 2017, 35, 1195–1200. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, J.; Wu, C.; Zheng, F. The Footprint of the 11-Year Solar Cycle in Northeastern Pacific SSTs and Its Influence on the Central Pacific El Niño. Geophys. Res. Lett. 2021, 48, e2020GL091369. [Google Scholar] [CrossRef]
- Maruyama, F.; Kai, K.; Morimoto, H. Wavelet-Based Multifractal Analysis on a Time Series of Solar Activity and PDO Climate Index. Adv. Space Res. 2017, 60, 1363–1372. [Google Scholar] [CrossRef]
- SENAMHI. Escenarios del Cambio Climático en el Perú al 2050: Cuenca del Río Piura; Servicio Nacional de Meteorología e HIdrología del Perú: Lima, Peru, 2005; p. 197. [Google Scholar]
- Gutiérrez, D.; Akester, M.; Naranjo, L. Productivity and Sustainable Management of the Humboldt Current Large Marine Ecosystem under Climate Change. Environ. Dev. 2016, 17, 126–144. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, S.; Zhang, J.; Huang, P. The Role of Background SST Changes in the ENSO-Driven Rainfall Variability Revealed from the Atmospheric Model Experiments in CMIP5/6. Atmos. Res. 2021, 261, 105732. [Google Scholar] [CrossRef]
- Mamalakis, A.; Randerson, J.T.; Yu, J.-Y.; Pritchard, M.S.; Magnusdottir, G.; Smyth, P.; Levine, P.A.; Yu, S.; Foufoula-Georgiou, E. Zonally Contrasting Shifts of the Tropical Rain Belt in Response to Climate Change. Nat. Clim. Change 2021, 11, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Montini, T.L.; Jones, C.; Carvalho, L.M.V. The South American Low-Level Jet: A New Climatology, Variability, and Changes. J. Geophys. Res. Atmos. 2019, 124, 1200–1218. [Google Scholar] [CrossRef]
- Alvarez, M.; Vera, C.S.; Kiladis, G.; Liebmann, B. Influence of the Madden Julian Oscillation on Precipitation and Surface Air Temperature in South America. Clim. Dyn. 2015, 46, 245–262. [Google Scholar] [CrossRef]
- Alvarez, M.; Vera, C.; Kiladis, G. MJO Modulating the Activity of the Leading Mode of Intraseasonal Variability in South America. Atmosphere 2017, 8, 232. [Google Scholar] [CrossRef]
- Grimm, A.M. Interannual Climate Variability in South America: Impacts on Seasonal Precipitation, Extreme Events, and Possible Effects of Climate Change. Stoch. Environ. Res. Risk Assess. 2011, 25, 537–554. [Google Scholar] [CrossRef]
- Cess, R.D.; Zhang, M.; Wielicki, B.A.; Young, D.F.; Zhou, X.-L.; Nikitenko, Y. The Influence of the 1998 El Niño upon Cloud-Radiative Forcing over the Pacific Warm Pool. J. Clim. 2001, 14, 2129–2137. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Chen, X. Eastern Equatorial Pacific SST Seasonal Cycle in Global Climate Models: From CMIP5 to CMIP6. Acta Oceanol. Sin. 2020, 39, 50–60. [Google Scholar] [CrossRef]
- Carrillo, C.M. The Rainfall over Tropical South America Generated by Multiple Scale Processes. Master’s Thesis, Iowa State University, Digital Repository, Ames, IA, USA, 2010; p. 2807786. [Google Scholar]
- Huang, Y.; Ramaswamy, V.; Soden, B. An Investigation of the Sensitivity of the Clear-Sky Outgoing Longwave Radiation to Atmospheric Temperature and Water Vapor. J. Geophys. Res. Atmos. 2007, 112, 13. [Google Scholar] [CrossRef]
- Kluft, L.; Dacie, S.; Brath, M.; Buehler, S.; Stevens, B. Temperature-Dependence of the Clear-Sky Feedback in Radiative-Convective Equilibrium. Geophys. Res. Lett. 2021, 48, 10. [Google Scholar] [CrossRef]
- Lu, B.; Jin, F.-F.; Ren, H.-L. A Coupled Dynamic Index for ENSO Periodicity. J. Clim. 2018, 31, 16. [Google Scholar] [CrossRef]
- Su, H.; Jiang, J.; Neelin, D.; Shen, J.; Zhai, C.; Yue, Q.; Wang, Z.; Huang, L.; Choi, Y.-S.; Stephens, G.; et al. Tightening of Tropical Ascent and High Clouds Key to Precipitation Change in a Warmer Climate. Nat. Commun. 2017, 8, 9. [Google Scholar] [CrossRef]
- Hathaway, D.H. The Solar Cycle. Living Rev. Sol. Phys. 2015, 12, 4. [Google Scholar] [CrossRef]
- Chowdhury, P.; Choudhary, D.P.; Gosain, S.; Moon, Y.-J. Short-Term Periodicities in Interplanetary, Geomagnetic and Solar Phenomena during Solar Cycle 24. Astrophys. Space Sci. 2015, 356, 7–18. [Google Scholar] [CrossRef]
- Chowdhury, P.; Dwivedi, B.N. Periodicities of Sunspot Number and Coronal Index Time Series During Solar Cycle 23. Sol. Phys. 2011, 270, 365–383. [Google Scholar] [CrossRef]
- Feliks, Y.; Small, J.; Ghil, M. Global Oscillatory Modes in High-end Climate Modeling and Reanalyses. Clim. Dyn. 2021, 57, 3385–3411. [Google Scholar] [CrossRef]
- Martín-Chivelet, J. Cambios Climáticos: Una Aproximación al Sistema Tierra.; Fondo de Cultura Económica: Madrid, Spain, 1999; Volume 1, ISBN 84-7954-542-9. [Google Scholar]
- Griggs, J.A.; Harries, J.E. Comparison of Spectrally Resolved Outgoing Longwave Data between 1970 and Present; Strojnik, M., Ed.; University of Bristol: Denver, CO, USA, 2004; p. 164. [Google Scholar]
- Koll, D.D.B.; Cronin, T.W. Earth’s Outgoing Longwave Radiation Linear Due to H2O Greenhouse Effect. Proc. Natl. Acad. Sci. USA 2018, 115, 10293–10298. [Google Scholar] [CrossRef]
- Manabe, S. Role of Greenhouse Gas in Climate Change. Tellus Dyn. Meteorol. Oceanogr. 2019, 71, 1620078. [Google Scholar] [CrossRef]
- Zhang, L.; Delworth, T.L. Simulated Response of the Pacific Decadal Oscillation to Climate Change. J. Clim. 2016, 29, 5999–6018. [Google Scholar] [CrossRef]
- Kayano, M.T.; Andreoli, R.V. Relations of South American Summer Rainfall Interannual Variations with the Pacific Decadal Oscillation. Int. J. Climatol. 2007, 27, 531–540. [Google Scholar] [CrossRef]
- Gamelin, B.L.; Carvalho, L.M.V.; Jones, C. Evaluating the Influence of Deep Convection on Tropopause Thermodynamics and Lower Stratospheric Water Vapor: A RELAMPAGO Case Study Using the WRF Model. Atmos. Res. 2022, 267, 105986. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Crespo, N.M.; Dutra, L.M.M.; Ferreira, G.W.d.S.; Rehbein, A.; Drumond, A.; da Rocha, R.P.; Souza, C.A. de Impacts of Teleconnection Patterns on South America Climate. Ann. N. Y. Acad. Sci. 2021, 1504, 116–153. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Hsu, Y.-C.; Lee, C.-P.; Wu, C.-R. Coupling Influences of ENSO and PDO on the Inter-Decadal SST Variability of the ACC around the Western South Atlantic. Sustainability 2019, 11, 4853. [Google Scholar] [CrossRef]
- Herho, S.; Fajary, F.; Irawan, D. On the Statistical Learning Analysis of Rain Gauge Data over the Natuna Islands. Indones. J. Stat. Its Appl. 2022, 6, 347–357. [Google Scholar] [CrossRef]
- Nogués-Paegle, J.; Mechoso, C.R.; Fu, R.; Berbery, E.H.; Chao, W.C.; Chen, T.-C.; Cook, K.; Diaz, A.F.; Enfield, D.; Ferreira, R.; et al. Progress in Panamerican Clivar Research: Understanding the South American Monsoon System. Meteorologica 2002, 27, 3–32. [Google Scholar]
- WMO. State of the Climate in Latin America and the Caribbean 2021; World Meteorological Organization: Geneva, Switzerland, 2021; p. 44. [Google Scholar]
Weather Stations | Chosen Period | Variable | Altitude (m.a.s.l) |
---|---|---|---|
Aija | 1999–2019 | P., Max. T, Min.T. | 3478 |
Cachicadan | 1986–2019 | P., Max. T, Min.T. | 2885 |
Cajamarca | 1986–2019 | P., Max. T, Min.T. | 2686 |
Cajatambo | 1990–2019 | P., Max. T, Min.T. | 3405 |
Casapalca | 1987–2019 | Precipitation | 4924 |
Carhuaz | 1986–2016 | P., Max. T, Min.T. | 2644 |
Chavín | 2000–2019 | P., Max. T, Min.T. | 3132 |
Chiquián | 1986–2019 | P., Max. T, Min.T. | 3412 |
Dos de Mayo | 2000–2019 | P., Max. T, Min.T. | 3474 |
Huamachuco | 1986–2019 | P., Max. T, Min.T. | 3178 |
Huánuco | 1986–2019 | P., Max. T, Min.T. | 1918 |
Matucana | 1986–2019 | P., Max. T, Min.T. | 2417 |
Oyón | 1986–2019 | P., Max. T, Min.T. | 3663 |
Pomabamba | 1989–2019 | P., Max. T, Min.T. | 2975 |
A. Weberbahuer | 1986–2019 | P., Max. T, Min.T. | 2666 |
Huaraz | 1998–2019 | P., Max. T, Min.T. | 3071 |
Recuay | 1986–2019 | P., Max. T, Min.T. | 3417 |
Index | Region | Period |
---|---|---|
ONI Index (ENSO) [41] | Equatorial Pacific | 1950–2021 |
SST Index [42] | El Niño 1 + 2 | 1982–2021 |
Humboldt Current [43] | 7–9° S latitude | 1997–2017 |
ITCZ displacement [44] | 90–60° W longitude | 1979–2005 |
Outgoing Longwave Radiation [45] | Peruvian Andes | 1999–2014 |
Bolivian High [46] | Bolivia | 1979–2014 |
SALLJ [47] | Eastern Andes | 1979–2018 |
Chocó LLJ [48] | Colombia North | 1978–2010 |
Caribbean LLJ [44] | Caribbean Sea | 1979–2010 |
MJO Index [49] | 40° W longitude | 1979–2021 |
Variable | Intraseasonal | Intraseasonal | Intraseasonal | Interseasonal | Interseasonal | Annual |
---|---|---|---|---|---|---|
Maximum T. | 27–30 days | 46–52 days | 90 days | 122 days | 182 days | 365 days |
Minimum T. | 27–30 days | 46–52 days | 90 days | 122 days | 182 days | 365 days |
Precipitation | No period | 46–52 days | 90 days | 122 days | 182 days | 365 days |
Variable | Interannual | Interannual | Interannual | Interannual | Interannual | Interannual | Interdec. | Interdec. |
---|---|---|---|---|---|---|---|---|
Maximum T. | 1 yr 3 m. | 1 yr 6 m. | 1 yr 9 m. | 3 yr | 4 yr 6 m | 5.6–7 yr | 11–12 yr | 14–18 yr |
Minimum T. | 1 yr 3 m. | 1 yr 6 m. | 1 yr 9 m. | 3 yr | 4 yr 6 m | 5.6–7 yr | 11–12 yr | No period |
Precipitation | No period | 1 yr 3 m. | 1 yr 9 m. | No period | No period | 5.6–7 yr | 11–12 yr | 14–18 yr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Sánchez, A.; Úbeda, J.; Tanarro, L.M.; Naranjo-Fernández, N.; Álvarez-Aldegunde, J.A.; Iparraguirre, J. Climate Patterns and Their Influence in the Cordillera Blanca, Peru, Deduced from Spectral Analysis Techniques. Atmosphere 2022, 13, 2107. https://doi.org/10.3390/atmos13122107
Fernández-Sánchez A, Úbeda J, Tanarro LM, Naranjo-Fernández N, Álvarez-Aldegunde JA, Iparraguirre J. Climate Patterns and Their Influence in the Cordillera Blanca, Peru, Deduced from Spectral Analysis Techniques. Atmosphere. 2022; 13(12):2107. https://doi.org/10.3390/atmos13122107
Chicago/Turabian StyleFernández-Sánchez, Adrián, José Úbeda, Luis Miguel Tanarro, Nuria Naranjo-Fernández, José Antonio Álvarez-Aldegunde, and Joshua Iparraguirre. 2022. "Climate Patterns and Their Influence in the Cordillera Blanca, Peru, Deduced from Spectral Analysis Techniques" Atmosphere 13, no. 12: 2107. https://doi.org/10.3390/atmos13122107
APA StyleFernández-Sánchez, A., Úbeda, J., Tanarro, L. M., Naranjo-Fernández, N., Álvarez-Aldegunde, J. A., & Iparraguirre, J. (2022). Climate Patterns and Their Influence in the Cordillera Blanca, Peru, Deduced from Spectral Analysis Techniques. Atmosphere, 13(12), 2107. https://doi.org/10.3390/atmos13122107