Comparison of Urban Heat Island Diurnal Cycles under Various Atmospheric Conditions Using WRF-UCM
Abstract
:1. Introduction
2. Methodology and Data
2.1. Model Parameterization
2.2. Domains and Atmospheric Conditions
2.3. Data Preparation
2.4. Evaluation of Data
3. Results
3.1. Evaluation of Model Accuracy
3.2. Urban Heat Island Intensity
3.3. Development of UHII in Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARW | Advanced Research WRF |
BEM | Building Energy Model |
BEP | Building Effect Paramaterization |
CLC | Corine Land Cover |
GDAS | Global Data Asimilation System |
GIS | Geographic Information System |
GRASS | Geographic Resources Analysis Support System |
JAXA | Japanese Aerospace Agency |
MAE | Mean absolute error |
NCEP | National Center for Environmental Forecasts |
NMM | Non-hydrostatic Mesoscale Model |
NWP | Numerical Weather Prediction |
PBL | Planetary boundary layer |
RMSE | Root mean square error |
RRTM | Rapid Radiative Transfer Model |
SYNOP | Surface Synoptic Observations |
TKE | Turbulent Kinetic Energy |
UA | Urban Atlas |
UCI | Urban cool island |
UCM | Urban Canopy Model |
UHI | Urban heat island |
UHII | Urban heat island intensity |
USGS | United States Geological Survey |
WRF | Weather Research and Forecasting |
Appendix A
UA Class | UA Class Description | USGS Class | USGS Class Description |
---|---|---|---|
1 | Isolated structures | 1 | Urban and built-up land |
2 | Continuous urban fabric (>80% built up) | 32 | High Intensity residential (80–100% built-up) |
3 | Pastures | 3 | Irrigated cropland or pastures |
4 | Arable land (annual crops) | 3 | Irrigated cropland or pastures |
5 | Industrial, commercial, public, military and private units | 33 | Commercial/Industrial/Transportation |
6 | Discontinuous dense urban fabric (50–80% built-up) | 31 | Low Intensity residential (30–80% built-up) |
7 | Other roads and associated land | 33 | Commercial/Industrial/Transportation |
8 | Discontinuous medium density urban fabric (30–50% built-up) | 31 | Low Intensity residential (30–80% built-up) |
9 | Land without current use | 19 | Barren or sparsely vegetated |
10 | Discontinuous low density urban fabric (10–30% built-up) | 31 | Low Intensity residential (30–80% built-up) |
11 | Railways and associated land | 33 | Commercial/Industrial/Transportation |
12 | Mineral extraction and dump sites | 19 | Barren or sparsely vegetated |
13 | Green urban areas | 9 | Mixed shrubland/cropland |
14 | Sports and leisure facilities | 9 | Mixed shrubland/cropland |
15 | Forests | 15 | Mixed forest |
16 | Discontinuous very low density urban fabric (<10% built-up) | 9 | Mixed shrubland/cropland |
17 | Herbaceous vegetation associations (natural grassland, moors...) | 7 | Grassland |
18 | Airports | 33 | Commercial/Industrial/Transportation |
19 | Water | 16 | Water bodies |
20 | Construction sites | 33 | Commercial/Industrial/Transportation |
21 | Wetlands | 17 | Herbacous wetland |
22 | Fast transit roads and associated land | 33 | Commercial/Industrial/Transportation |
CLC Class | CLC Class Description | USGS Class | USGS Class Description |
---|---|---|---|
111 | Continuous urban fabric | 32 | High Intensity residential (80–100% built-up) |
112 | Discontinuous urban fabric | 31 | Low Intensity residential (30–80% built-up) |
121 | Industrial or commercial units | 33 | Commercial/Industrial/Transportation |
122 | Road and rail networks | 33 | Commercial/Industrial/Transportation |
123 | Port areas | 33 | Commercial/Industrial/Transportation |
124 | Airports | 33 | Commercial/Industrial/Transportation |
131 | Mineral extraction sites | 19 | Barren or sparsely vegetated |
132 | Dump sites | 19 | Barren or sparsely vegetated |
133 | Construction sites | 33 | Commercial/Industrial/Transportation |
141 | Green urban areas | 9 | Mixed shrubland/cropland |
142 | Sport and leisure facilities | 9 | Mixed shrubland/cropland |
211 | Non-irrigated arable land | 3 | Irrigated cropland or pastures |
212 | Permanently irrigated land | 3 | Irrigated cropland or pastures |
213 | Rice fields | 17 | Herbacous wetland |
221 | Vineyards | 9 | Mixed shrubland/cropland |
222 | Fruit trees and berry plantations | 6 | Cropland/woodland mosaic |
231 | Pastures | 3 | Irrigated cropland or pastures |
241 | Annual crops associated with permanent crops | 3 | Irrigated cropland or pastures |
242 | Complex cultivation patterns | 3 | Irrigated cropland or pastures |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 3 | Irrigated cropland or pastures |
311 | Broad-leaved forest | 11 | Deciduous broadleaf forest |
312 | Coniferous forest | 14 | Evergreen needleleaf forest |
313 | Mixed forest | 15 | Mixed forest |
321 | Natural grasslands | 7 | Grassland |
322 | Moors and heathland | 17 | Herbacous wetland |
324 | Transitional woodland-shrub | 6 | Cropland/woodland mosaic |
331 | Beaches, dunes, sands | 19 | Barren or sparsely vegetated |
332 | Bare rocks | 19 | Barren or sparsely vegetated |
333 | Sparsely vegetated areas | 19 | Barren or sparsely vegetated |
334 | Burnt areas | 19 | Barren or sparsely vegetated |
411 | Inland marshes | 17 | Herbacous wetland |
412 | Peat bogs | 17 | Herbacous wetland |
511 | Water courses | 16 | Water bodies |
512 | Water bodies | 16 | Water bodies |
References
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Danchovski, V.; Dimitrova, R.; Vladimirov, E.; Egova, E.; Ivanov, D. Comparison of urban mixing layer height from ceilometer, radiosonde and WRF model. In AIP Conference Proceedings; AIP Publishing LLC: Sofia, Bulgaria, 2019; Volume 2075. [Google Scholar]
- Pal, S.; Xueref-Remy, I.; Ammoura, L.; Charette, P.; Gibert, F.; Royer, P.; Dieudonné, E.; Dupont, J.-C.; Haeffelin, M.; Lac, C.; et al. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity. Atmos. Environ. 2012, 63, 261–275. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Branea, A.M.; Danciu, M.I.; Gaman, M.S.; Badescu, S. Challenges regarding the study of urban heat islands. Ruleset for Researchers. In Proceedings of the Risk Reduction for Resilient Cities, Bucharest, Romania, 3–4 November 2016. [Google Scholar]
- Howard, L. The Climate of London; International Association for Urban Climate: London, UK, 1818. [Google Scholar]
- Theeuwes, N.E.; Barlow, J.F.; Teuling, A.J.; Grimmond, C.S.B.; Kotthaus, S. Persistent cloud cover over mega-cities linked to surface heat release. NPJ Clim. Atmos. Sci. 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Schwartz, R.E.; Iacobellis, S.; Seager, R.; Cook, B.I.; Still, C.J.; Husak, G.; Michaelsen, J. Urbanization causes increased cloud base height and decreased fog in coastal Southern California. Geophys. Res. Lett. 2015, 42, 1527–1536. [Google Scholar] [CrossRef] [Green Version]
- Lau, N.C.; Nath, M.J. A model study of heat waves over north America: Meteorological aspects and projections for the twenty-first century. J. Clim. 2012, 25, 4761–4784. [Google Scholar] [CrossRef]
- Zschenderlein, P.; Fink, A.H.; Pfahl, S.; Wernli, H. Processes determining heat waves across different European climates. Q. J. R. Meteorol. Soc. 2019, 145, 2973–2989. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Norton, B. Planning for a Cooler Future: Green Infrastructure to Reduce Urban Heat; Victorian Centre for Climate Change Adaptation Research: Melbourne, Australia, 2013. [Google Scholar] [CrossRef]
- Výberčí, D.; Švec, M.; Faško, P.; Savinová, H.; Trizna, M.; Mičietová, E. The effects of the 1996–2012 summer heat events on human mortality in Slovakia. Morav. Geogr. Rep. 2015, 23, 57–69. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pachecco-Torres, R.; Ordonez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Hofierka, J.; Gallay, M.; Onačillová, K.; Hofierka, J., Jr. Physically based land surface temperature modeling in urban areas using a 3-D city model and multispectral satellite data. Urban Clim. 2020, 31, 100566. [Google Scholar] [CrossRef]
- Onačillová, K.; Gallay, M. Spatio-temporal analysis of surface urban heat island based on LANDSAT ETM+ and OLI/TIRS imagery in the city of Košice, Slovakia. Carpathian J. Earth Environ. Sci. 2018, 13, 395–408. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y. Remote sensing retrieval of urban land surface temperature in hot-humid region. Urban Clim. 2018, 24, 299–310. [Google Scholar] [CrossRef]
- Onačillová, K.; Gallay, M.; Paluba, D.; Péliová, A.; Tokarčík, O.; Laubertová, D. Combining Landsat 8 and Sentinel-2 Data in Google Earth Engine to Derive Higher Resolution Land Surface Temperature Maps in Urban Environment. Remote Sens. 2022, 14, 4076. [Google Scholar] [CrossRef]
- Li, Z.; Erb, A.; Sun, Q.; Liu, Y.; Shuai, Y.; Wang, Z.; Boucher, P.; Schaaf, C. Preliminary assessment of 20-m surface albedo retrievals from sentinel-2A surface reflectance and MODIS/VIIRS surface anisotropy measures. Remote Sens. Environ. 2018, 217, 352–365. [Google Scholar] [CrossRef]
- Hofierka, J.; Onačillová, K. Estimating Visible Band Albedo from Aerial Orthophotographs in Urban Areas. Remote Sens. 2022, 14, 164. [Google Scholar] [CrossRef]
- Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [Green Version]
- Hofierka, J.; Zlocha, M. A New 3-D Solar Radiation Model for 3-D City Models. Trans. GIS 2012, 16, 681–690. [Google Scholar] [CrossRef]
- Hofierka, J.; Bogľarský, J.; Kolečanský, Š.; Enderová, A. Modeling Diurnal Changes in Land Surface Temperature in Urban Areas under Cloudy Conditions. ISPRS Int. J. Geo.-Inf. 2020, 9, 534. [Google Scholar] [CrossRef]
- Bueno, B.; Norford, L.; Hidalgo, J.; Pigeon, G. The urban weather generator. J. Build. Perform. Simul. 2013, 6, 269–281. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Predicting Urban Heat Island Circulation Using CFD. Build. Environ. 2016, 99, 82–97. [Google Scholar] [CrossRef]
- Maronga, B.; Banzhaf, S.; Burmeister, C.; Esch, T.; Forkel, R.; Fröhlich, D.; Fuka, V.; Gehrke, K.F.; Geletič, J.; Giersch, S.; et al. Overview of the PALM model system 6.0. Geosci. Model Dev. 2020, 13, 1335–1372. [Google Scholar] [CrossRef]
- Deutsche Wetterdienst. Microscale Urban Climate Model MUKLIMO_3. Available online: https://www.dwd.de/EN/ourservices/muklimo_basic/muklimo_3_basic_version_en.pdf (accessed on 29 October 2022).
- Salim, M.H.; Schlünzen, K.H.; Grawe, D.; Boettcher, M.; Gierisch, A.M.U.; Fock, B.H. The microscale obstacle-resolving meteorological model MITRAS v2.0: Model theory. Geosci. Model Dev. 2018, 11, 3427–3445. [Google Scholar] [CrossRef] [Green Version]
- Consortium for Small-Scale Modeling. COSMO and ICON NWP Models. Available online: https://www.cosmo-model.org/ (accessed on 26 November 2022).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4; Technical Report NCAR/TN-556+STR; UCAR; NCAR: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Dudha, J. Overview of WRF Physics. Basic WRF Tutorial. 2015. Available online: http://homepages.see.leeds.ac.uk/~lecag/wiser/sample_wiser_files.dir/Physics_Dudhia.ppt.pdf (accessed on 7 October 2022).
- Tewari, M.; Chen, F.; Kusaka, H.; Miao, S. Coupled WRF/Unified Noah/Urban-Canopy Modeling System. Available online: https://ral.ucar.edu/sites/default/files/public/product-tool/WRF-LSM-Urban.pdf (accessed on 7 October 2022).
- Chen, F. The Noah Land Surface Model in WRF: A Short Tutorial. LSM Group Meeting. 17 April 2007. Available online: https://www.atmos.illinois.edu/~snesbitt/ATMS597R/notes/noahLSM-tutorial.pdf (accessed on 7 October 2022).
- Bhati, S.; Mohan, M. WRF-urban canopy model evaluation for the assessment of heat island and thermal comfort over an urban airshed in India under varying land use/land cover conditions. Geosci. Lett. 2018, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Bhati, S.; Mohan, M. The impact of land use/land cover on WRF model performance in a subtropical urban environment. In Proceedings of the 9th International Conference on Urban Climate, Toulouse, France, 20–24 July 2015; Available online: http://www.meteo.fr/icuc9/LongAbstracts/nomtm11_@28cont@29-2-6991307_a.pdf (accessed on 14 November 2022).
- Fedor, T.; Hofierka, J. Increasing the accuracy of the WRF-ARW numerical weather prediction model using Corine Land Cover and JAXA data. Geogr. Cassoviensis 2021, 15, 218–232. [Google Scholar] [CrossRef]
- Vladimirov, E.; Dimitrivova, R.; Danchovski, V. Sensitivity of WRF Model Results to Topography and Land Cover: Study for the Sofia Region. Annu. Sofia 2018, 111, 87–101. Available online: https://www.phys.uni-sofia.bg/annual/archive/111/full/GSU-Fizika-111_07_color.pdf (accessed on 24 September 2022).
- Kong, J.; Zhao, Y.; Carmeliet, J.; Lei, C. Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale. Sustainability 2021, 13, 10923. [Google Scholar] [CrossRef]
- Jiang, S.; Lee, X.; Wang, J.; Wang, K. Amplified Urban Heat Islands during Heat Wave Periods. J. Geophys. Res. Atmos. 2019, 124, 7797–7812. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Yang, J.; Kusaka, H.; Salamanca, F.; Watson, C.; Treinish, C. Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environ. Res. Lett. 2019, 14, 034002. [Google Scholar] [CrossRef]
- Adachi, S.A.; Kimura, F.; Kusaka, H.; Inoue, T.; Ueda, H. Comparison of the Impact of Global Climate Changes and Urbanization on Summertime Future Climate in the Tokyo Metropolitan Area. J. Appl. Meteorol. Climatol. 2012, 15, 1441–1454. [Google Scholar] [CrossRef]
- Lauwaet, D.; De Ridder, K.; Saeed, S.; Brisson, E.; Chatterjee, F.; van Lipzig, N.M.P.; Maiheu, B.; Hooyberghs, H. Assessing the current and future urban heat island of Brussels. Urban Clim. 2016, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, A. Analysis of the diurnal cycle of air temperature between rural Berkshire and the University of Reading: Possible role of the urban heat island. Weather 2020, 75, 235–241. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Correia, E.; Niza, S.; Soares, A. Heatwaves and Summer Urban Heat Islands: A Daily Cycle Approach to Unveil the Urban Thermal Signal Changes in Lisbon, Portugal. Atmosphere 2021, 12, 292. [Google Scholar] [CrossRef]
- Al-Obaidi, I.; Rayburg, S.; Półrolniczak, M.; Neave, M. Assessing the Impact of Wind Conditions on Urban Heat Islands in Large Australian Cities. J. Ecol. Eng. 2021, 22, 1–15. [Google Scholar] [CrossRef]
- Halios, C.H.; Barlow, J.F. Observations of the Morning Development of the Urban Boundary Layer Over London, UK, Taken During the ACTUAL Project. Bound.-Layer Meteorol. 2018, 166, 395–422. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Wang, W.; Gill, D. WRF Nesting; Mesoscale & Microscale Meteorological Division; NCAR: Sao Paulo, Brazil, 2012. Available online: https://ruc.noaa.gov/wrf/wrf-chem/wrf_tutorial_2012_brazil/WRF_nesting.pdf (accessed on 27 September 2022).
- Jiménez-Estéve, B.; Udina, M.; Soler, M.R.; Pepin, N.; Miró, J.R. Land Use and Topography Influence in a Complex Terrain Area: A High Resolution Mesoscale Modelling Study over the Eastern Pyrenees using the WRF Model. Atmos. Res. 2017, 202, 49–62. [Google Scholar] [CrossRef] [Green Version]
- National Centers for Environmental Prediction; National Weather Service; NOAA; U.S. Department of Commerce. NCEP GDAS/FNL 0.25 degree global tropospheric analyses and forecast grids. In Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory; NOAA: Silver Spring, MD, USA, 2022. [Google Scholar] [CrossRef]
- Mitchell, K. The Community Noah Land Surface Model. User’s Guide. 9 February 2005. Available online: https://scholar.google.sk/scholar_url?url=https://www.academia.edu/download/42046380/THE_COMMUNITY_Noah_LAND-SURFACE_MODEL_L20160204-7785-1jpbaav.pdf&hl=sk&sa=X&ei=bogbY90v5JfL1g_7lr-ABQ&scisig=AAGBfm0Yj7ndH9W_Z7aiuaMmhSjKR-t2VQ&oi=scholarr (accessed on 15 October 2022).
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Steven, J.T.; Patrick, D.B.; Lacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Sun, W.Y. A One-dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Japan 2002, 80, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. Climatol. 2004, 43, 171–181. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- University of Wyoming. Vertical Profiles Data Visualization from Gánovce Areological Center. 2022. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 8 October 2022).
- Air Weather Service Scott AFB Il. The Use of the Skew T, Log P Diagram in Analysis and Forecasting. Defense Technical Information Center. 1990. Available online: https://cpb-us-w2.wpmucdn.com/sites.uwm.edu/dist/8/663/files/2019/05/SkewTDocumentation.pdf (accessed on 15 November 2022).
- European Environmental Agency CORINE Land Cover 2018. Copernicus Land Monitoring Service. 2022. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 27 September 2022).
- European Environmental Agency Urban Atlas 2018. Copernicus Land Monitoring Service. 2022. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 27 September 2022).
- Siewert, J.; Kroszczynski, K. GIS Data as a Valuable Source of Information for Increasing Resolution of the WRF Model for Warsaw. Remote Sens. 2020, 12, 1881. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Elsevier: San Diego, CA, USA, 2006; pp. 232–255. Available online: https://sunandclimate.files.wordpress.com/2009/05/statistical-methods-in-the-atmospheric-sciences-0127519661.pdf (accessed on 30 September 2022).
- Lee, K.; Kim, Y.; Sung, H.C.; Ryu, J.; Jeon, S.W. Trend Analysis of Urban Heat Island Intensity According to Urban Area Change in Asian Mega Cities. Sustainability 2020, 12, 112. [Google Scholar] [CrossRef] [Green Version]
- Vogel, J.; Afshari, A. Comparison of Urban Heat Island Intensity Estimation Methods Using Urbanized WRF in Berlin, Germany. Atmosphere 2020, 11, 1338. [Google Scholar] [CrossRef]
- Sheridan, P.; Smith, S.; Brown, A.; Vosper, S. A simple height-based correction for temperature downscaling in complex terrain. Meteorol. Appl. 2010, 17, 329–339. [Google Scholar] [CrossRef]
- Bokwa, A.; Wypych, A.; Hajto, M.J. Role of Fog in Urban Heat Island Modification in Kraków, Poland. Aerosol Air Qual. Res. 2018, 18, 178–187. [Google Scholar] [CrossRef]
- Li, H.; Michael, W.; Xun, W.; Sahar, S. Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM. Theor. Appl. Climatol. 2018, 134, 67–81. Available online: https://link.springer.com/article/10.1007/s00704-017-2253-z (accessed on 15 November 2022). [CrossRef]
- Jin, L.; Suchert, S.; Fenner, D.; Meier, F. Integration of a Building Energy Model in an Urban Climate Model and its Application. Bound.-Layer Meteorol. 2021, 178, 249–281. Available online: https://link.springer.com/article/10.1007/s10546-020-00569-y (accessed on 15 November 2022). [CrossRef]
- Mohajerani, A.; Bakaric, J. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 502–538. [Google Scholar] [CrossRef] [PubMed]
- Seam, N.L.; Ludwig, F.L.; Donall, E.G.; Warner, T.; Bhumralkar, C.M. Numerical studies of urban planetary boundary-layer structure under realistic synoptic conditions. J. Appl. Meteorol. 1989, 28, 760–781. [Google Scholar] [CrossRef]
- Basset, R.; Cai, X.; Chapman, L.; Haeviside, C.; Thornes, J.E.; Muller, C.E.; Young, D.I.; Warren, E.L. Observations of urban heat island advection from a high-density monitoring network. Q. J. R. Meteorol. Soc. 2016, 142, 2434–2441. [Google Scholar] [CrossRef]
- Basara, J.B.; Basara, H.G.; Ilston, B.G.; Crawford, K.C. The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Adv. Meteorol. 2010, 2010, 230365. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhou, M.; Lenschow, D.H.; Cheng, Z.; Dou, Y. Observed Relationships Between the Urban Heat Island, Urban Pollution Island, and Downward Longwave Radiation in the Beijing Area. Earth Space Sci. 2020, 7, e2020EA001100. [Google Scholar] [CrossRef]
- Zhang, Z.; Paschalis, A.; Mijic, A.; Meili, N.; Manoli, G.; Reeuwijk, M.; Fatichi, S. A mechanistic assessment of urban heat island intensities and drivers across climates. Urban Clim. 2022, 44, 101215. [Google Scholar] [CrossRef]
- Ribeiro, I.; Martilli, A.; Falls, M.; Zonato, A.; Villalba, C. Highly resolved WRF-BEP/BEM simulations over Barcelona urban area with LCZ. Atmos. Res. 2021, 248, 105220. [Google Scholar] [CrossRef]
- Sharma, A.; Fernando, H.J.; Hellmann, J.; Chen, F. Sensitivity of WRF model to urban parameterizations, with applications to Chicago metropolitan urban heat island. In Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, Chicago, IL, USA, 3–7 August 2014. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Knievel, J.C. Evaluation of Urban Canopy Models against Near-Surface Measurements in Houston during a Strong Frontal Passage. Atmosphere 2022, 13, 1548. [Google Scholar] [CrossRef]
Parameter | Nest (D3) | Parent (D1, D2) |
---|---|---|
Time step (s) | 1.2 | 6, 30 |
Grid resolution | 100 × 100 | 100 × 100, 100 × 100 |
Grid size (°) | 0.002 | 0.01, 0.05 |
Vertical levels | 100 | 100 |
Shortwave radiation | Dudhia Shortwave Scheme | Dudhia Shortwave Scheme |
Longwave radiation | RRTM Longwave Scheme | RRTM Longwave Scheme |
Microphysics | Purdue Lin Scheme | Purdue Lin Scheme |
Cumulus physics | - | Kain–Fritsch Scheme |
Boundary layer | Bougeault–Lacarrere Scheme | Bougeault–Lacarrere Scheme |
Surface layer | Revised MM5 Scheme | Revised MM5 Scheme |
Land surface | Unified Noah LSM | Unified Noah LSM |
Urban physics | Urban Canopy Model | Urban Canopy Model |
Date | 31 August 2015 | 30 June 2022 | 12 June 2022 | 3 June 2017 |
---|---|---|---|---|
Solar insolation (hours) | 11.6 | 13.7 | 14.4 | 14 |
T2m | 31 August 2015 | 30 June 2022 | 12 June 2022 | 3 June 2017 | W10m | 31 August 2015 | 30 June 2022 | 12 June 2022 | 3 June 2017 |
---|---|---|---|---|---|---|---|---|---|
MBE | 1.731 | 0.726 | 0.037 | 1.059 | MBE | −0.251 | −0.210 | 0.304 | −0.003 |
MAE | 2.544 | 2.221 | 1.094 | 2.548 | MAE | 1.536 | 1.157 | 0.958 | 0.791 |
RMSE | 3.090 | 2.635 | 1.411 | 3.070 | RMSE | 2.828 | 2.202 | 1.647 | 0.991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedor, T.; Hofierka, J. Comparison of Urban Heat Island Diurnal Cycles under Various Atmospheric Conditions Using WRF-UCM. Atmosphere 2022, 13, 2057. https://doi.org/10.3390/atmos13122057
Fedor T, Hofierka J. Comparison of Urban Heat Island Diurnal Cycles under Various Atmospheric Conditions Using WRF-UCM. Atmosphere. 2022; 13(12):2057. https://doi.org/10.3390/atmos13122057
Chicago/Turabian StyleFedor, Tomáš, and Jaroslav Hofierka. 2022. "Comparison of Urban Heat Island Diurnal Cycles under Various Atmospheric Conditions Using WRF-UCM" Atmosphere 13, no. 12: 2057. https://doi.org/10.3390/atmos13122057
APA StyleFedor, T., & Hofierka, J. (2022). Comparison of Urban Heat Island Diurnal Cycles under Various Atmospheric Conditions Using WRF-UCM. Atmosphere, 13(12), 2057. https://doi.org/10.3390/atmos13122057