The Effect of European Climate Change on Indoor Thermal Comfort and Overheating in a Public Building Designed with a Passive Approach
Abstract
:1. Introduction
2. Methods and Materials
2.1. Methodology
2.2. Evaluation Indices
2.2.1. Heating and Cooling Energy
2.2.2. Thermal Comfort—PMV
2.2.3. Summer Overheating—ODH
2.3. Case Study Building
2.3.1. Opaque Construction
2.3.2. Windows: Glazing and Shading Specification
2.4. Setting Up the Parametric Numerical Model
2.4.1. Weather Files and Locations
2.4.2. Schedule Type
2.4.3. Clothing
2.4.4. HVAC
3. Results and Discussion
3.1. Overall Assessment with Design Explorer
3.2. Weather Assessment
3.3. Thermal Comfort–PMV
3.4. Thermal Comfort and Energy Consumption
3.5. Internal Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Raj, B.P.; Meena, C.S.; Agarwal, N.; Saini, L.; Hussain Khahro, S.; Subramaniam, U.; Ghosh, A. A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit. Energies 2021, 14, 4487. [Google Scholar] [CrossRef]
- Besbas, S.; Nocera, F.; Zemmouri, N.; Khadraoui, M.A.; Besbas, A. Parametric-Based Multi-Objective Optimization Workflow: Daylight and Energy Performance Study of Hospital Building in Algeria. Sustainability 2022, 14, 12652. [Google Scholar] [CrossRef]
- Li, Z.; Zou, Y.; Tian, M.; Ying, Y. Research on Optimization of Climate Responsive Indoor Space Design in Residential Buildings. Buildings 2022, 12, 59. [Google Scholar] [CrossRef]
- Tronchin, L.; Fabbri, K.; Bertolli, C. Controlled Mechanical Ventilation in Buildings: A Comparison between Energy Use and Primary Energy among Twenty Different Devices. Energies 2018, 11, 2123. [Google Scholar] [CrossRef] [Green Version]
- Sarna, I.; Ferdyn-Grygierek, J.; Grygierek, K. Thermal Model Validation Process for Building Environment Simulation: A Case Study for Single-Family House. Atmosphere 2022, 13, 1295. [Google Scholar] [CrossRef]
- Mahdavi, A.; Tahmasebi, F. Predicting People’s Presence in Buildings: An Empirically Based Model Performance Analysis. Energy Build. 2015, 86, 349–355. [Google Scholar] [CrossRef]
- Picard, T.; Hong, T.; Luo, N.; Lee, S.H.; Sun, K. Robustness of Energy Performance of Zero-Net-Energy (ZNE) Homes. Energy Build. 2020, 224, 110251. [Google Scholar] [CrossRef]
- Yoshino, H.; Hong, T.; Nord, N. IEA EBC Annex 53: Total Energy Use in Buildings—Analysis and Evaluation Methods. Energy Build. 2017, 152, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Manapragada, N.V.S.K.; Shukla, A.K.; Pignatta, G.; Yenneti, K.; Shetty, D.; Nayak, B.K.; Boorla, V. Development of the Indian Future Weather File Generator Based on Representative Concentration Pathways. Sustainability 2022, 14, 15191. [Google Scholar] [CrossRef]
- Chen, R.; Tsay, Y.-S. An Integrated Sensitivity Analysis Method for Energy and Comfort Performance of an Office Building along the Chinese Coastline. Buildings 2021, 11, 371. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Hwang, R.-L.; Lin, T.-P.; Liang, H.-H.; Yang, K.-H.; Yeh, T.-C. Additive Model for Thermal Comfort Generated by Matrix Experiment Using Orthogonal Array. Build. Environ. 2009, 44, 1730–1739. [Google Scholar] [CrossRef]
- Da Pereira, P.F.C.; Broday, E.E. Determination of Thermal Comfort Zones through Comparative Analysis between Different Characterization Methods of Thermally Dissatisfied People. Buildings 2021, 11, 320. [Google Scholar] [CrossRef]
- US Green Building Council LEED. Leadership in Energy and Environmental Design v4.1 Rating System. Available online: https://www.usgbc.org/leed/v41 (accessed on 30 October 2022).
- BRE Group BREEAM (Building Research Establishment Environmental Assessment Method). Available online: https://bregroup.com/products/breeam/ (accessed on 30 October 2022).
- Deutsche Gesellschaft für Nachhaltiges Bauen DGNB System. Available online: https://www.dgnb.de/de/verein/system/ (accessed on 30 October 2022).
- International WELL Building Institute (IWBI) WELL v2 Standard. Available online: https://v2.wellcertified.com/en/wellv2/overview (accessed on 30 October 2022).
- Standard 90.1-2019; Energy Standard for Buildings Except Low-Rise Residential Buildings (SI Edition) 2019. American Society of Heating & Refrigerating & Air-Conditioning Engineers: Atlanta, GA, USA, 2019.
- EnergyPlus Engineering Reference: Auxiliary Programs-Source Weather Data Formats 2022. Available online: https://bigladdersoftware.com/epx/docs/22-1/auxiliary-programs/source-weather-data-formats.html (accessed on 30 October 2022).
- Andrade, C.; Mourato, S.; Ramos, J. Heating and Cooling Degree-Days Climate Change Projections for Portugal. Atmosphere 2021, 12, 715. [Google Scholar] [CrossRef]
- Chidiac, S.E.; Yao, L.; Liu, P. Climate Change Effects on Heating and Cooling Demands of Buildings in Canada. CivilEng 2022, 3, 277–295. [Google Scholar] [CrossRef]
- Ahmadian, E.; Bingham, C.; Elnokaly, A.; Sodagar, B.; Verhaert, I. Impact of Climate Change and Technological Innovation on the Energy Performance and Built Form of Future Cities. Energies 2022, 15, 8592. [Google Scholar] [CrossRef]
- Ramos Ruiz, G.; Olloqui del Olmo, A. Climate Change Performance of NZEB Buildings. Buildings 2022, 12, 1755. [Google Scholar] [CrossRef]
- Velashjerdi Farahani, A.; Jokisalo, J.; Korhonen, N.; Jylhä, K.; Ruosteenoja, K.; Kosonen, R. Overheating Risk and Energy Demand of Nordic Old and New Apartment Buildings during Average and Extreme Weather Conditions under a Changing Climate. Appl. Sci. 2021, 11, 3972. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Liu, P.; Liang, R.; Fu, Z. A Parameterized Design Method for Building a Shading System Based on Climate Adaptability. Atmosphere 2022, 13, 1244. [Google Scholar] [CrossRef]
- Ladybug Tools LLC. EPW Map. Available online: https://www.ladybug.tools/epwmap/ (accessed on 30 October 2022).
- Fernald, H.; Hong, S.; Bucking, S.; O’Brien, W. BIM to BEM Translation Workflows and Their Challenges: A Case Study Using a Detailed BIM Model. In Proceedings of the eSim 2018, Internatinol Building Performance Stimulation Association, Montreal, QB, Canada, 29–10 May 2018. [Google Scholar]
- Pereira, V.; Santos, J.; Leite, F.; Escórcio, P. Using BIM to Improve Building Energy Efficiency–A Scientometric and Systematic Review. Energy Build. 2021, 250, 111292. [Google Scholar] [CrossRef]
- Ladybug Tools LLC. Ladybug Tools. Available online: www.ladybug.tools (accessed on 30 October 2022).
- COREstudio; ThorntonTomasetti. TT TOOLBOX (by COREstudio) 2022. Available online: https://www.food4rhino.com/en/app/tt-toolbox (accessed on 30 October 2022).
- Shao, Z.; Wang, B.; Xu, Y.; Sun, L.; Ge, X.; Cai, L.; Chang, C. Dynamic Concentrated Solar Building Skin Design Based on Multiobjective Optimization. Buildings 2022, 12, 2026. [Google Scholar] [CrossRef]
- Fürtön, B.; Szagri, D.; Nagy, B. Adaptive Clothing Based Analysis. Available online: http://tt-acm.github.io/DesignExplorer/?ID=BL_3gSkwDV (accessed on 30 October 2022).
- Mackey, C.; Sadeghipour Roudsari, M. The Tool(s) Versus The Toolkit. In Humanizing Digital Reality; Springer: Berlin/Heidelberg, Germany, 2018; pp. 93–101. ISBN 978-981-10-6610-8. [Google Scholar]
- Standard 55-2020; Thermal Environmental Conditions for Human Occupancy 2020. American Society of Heating & Refrigerating & Air-Conditioning Engineers: Atlanta, GA, USA, 2021.
- Wu, Z.; Li, N.; Wargocki, P.; Peng, J.; Li, J.; Cui, H. Field Study on Thermal Comfort and Energy Saving Potential in 11 Split Air-Conditioned Office Buildings in Changsha, China. Energy 2019, 182, 471–482. [Google Scholar] [CrossRef]
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- Tian, Z.; Zhang, S.; Deng, J.; Dorota Hrynyszyn, B. Evaluation on Overheating Risk of a Typical Norwegian Residential Building under Future Extreme Weather Conditions. Energies 2020, 13, 658. [Google Scholar] [CrossRef] [Green Version]
- Szagri, D.; Szalay, Z. Theoretical Fragility Curves−A Novel Approach to Assess Heat Vulnerability of Residential Buildings. Sustain. Cities Soc. 2022, 83, 103969. [Google Scholar] [CrossRef]
- Rakotonjanahary, M.; Scholzen, F.; Waldmann, D. Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg. Sustainability 2020, 12, 8474. [Google Scholar] [CrossRef]
- Gunawardena, K.; Steemers, K. Adaptive Comfort Assessments in Urban Neighbourhoods: Simulations of a Residential Case Study from London. Energy Build. 2019, 202, 109322. [Google Scholar] [CrossRef]
- The Core Writing Team; Pachauri, R.K.; Meyer, L.A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2015. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The Representative Concentration Pathways: An Overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R.; Xue, J.; Shao, J.; Guo, H. Assessment of Summer Overheating in Concrete Block and Cross Laminated Timber Office Buildings in the Severe Cold and Cold Regions of China. Buildings 2021, 11, 330. [Google Scholar] [CrossRef]
- Kuczyński, T.; Staszczuk, A.; Ziembicki, P.; Paluszak, A. The Effect of the Thermal Mass of the Building Envelope on Summer Overheating of Dwellings in a Temperate Climate. Energies 2021, 14, 4117. [Google Scholar] [CrossRef]
- Mályi Glass Háromrétegű Hőszigetelő Üvegszerkezet (Triple Glazed Insulating Glazing). Available online: https://malyiglass.eu/technikai-adatok/haromretegu-hoszigetelo-uvegszerkezetek (accessed on 30 October 2022).
- Ministry without Portfolio Decree No. 7/2006. (V.24.) on the Determination of Buildings’ Energy Performance (In Hungarian). Available online: https://njt.hu/jogszabaly/2006-7-20-6F (accessed on 30 October 2022).
- Solemma LLC Climate Studio Materials Database 2022. Available online: https://climatestudiodocs.com/docs/materials.html (accessed on 30 October 2022).
- Schiavon, S.; Lee, K.H. Dynamic Predictive Clothing Insulation Models Based on Outdoor Air and Indoor Operative Temperatures. Build. Environ. 2013, 59, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Fürtön, B.; Szagri, D.; Nagy, B. Fixed Clothing Based Analysis. Available online: http://tt-acm.github.io/DesignExplorer/?ID=BL_3DdwShq (accessed on 30 October 2022).
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Kershaw, T.; Shepherd, P.; Coley, D. On the Optimisation of Urban Form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone. Energies 2021, 14, 4026. [Google Scholar] [CrossRef]
Name | Passive Glazing | Normal Glazing | Transmissive Glazing |
---|---|---|---|
U-value [W/m2K] | 0.8 | 1.1 | 1.8 |
SHGC [1] | 0.4 | 0.45 | 0.45 |
VLT [1] | 0.45 | 0.55 | 0.6 |
Image | |||
Data source | [45] | [46] | [47] |
Name | Budapest (Hungary) | Kaunas (Lithuania) | Lisbon (Portugal) |
---|---|---|---|
Latitude [° N] | 47.4979 | 54.8985 | 38.7223 |
Longitude [° E] | 19.0402 | 23.9036 | 9.1393 |
Height above sea level [m] | 102 | 48 | 2 |
ASHRAE climate zone | 5A | 6A | 3A |
Schedule Name | Base Schedule Name | Schedule Modifications |
---|---|---|
Occupancy | “2019::SecondarySchool::Library” | 07:00 to 19:00 WD, 10–18:00 WE |
People | “2019::SecondarySchool::Library” | unmodified |
Lighting | “2019::SecondarySchool::Library” | LPD changed to 6.5 W/m2 |
Electrical equipment | “2019::SecondarySchool::Library” | unmodified |
Gas equipment | “2019::SecondarySchool::Library” | unmodified |
Hot water | “2019::SecondarySchool::Library” | unmodified |
Infiltration | “2019::SecondarySchool::Library” | unmodified |
Ventilation | “2019::SecondarySchool::Library” | air changes/h increased to 3.0 |
Setpoints | “2019::SecondarySchool::Library” | unmodified |
BP2020 | BP2050 | BP2100 | K2020 | K2050 | K2100 | L2020 | L2050 | L2100 | |
---|---|---|---|---|---|---|---|---|---|
Te,min [°C] | −10.80 | −8.70 | −7.40 | −20.00 | −18.60 | −16.90 | 4.20 | 5.60 | 6.30 |
Te,max [°C] | 36.60 | 38.70 | 40.00 | 32.20 | 33.60 | 34.40 | 36.40 | 37.00 | 37.70 |
Mean [°C] | 11.75 | 13.43 | 14.78 | 7.65 | 9.15 | 10.40 | 17.08 | 17.92 | 18.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fürtön, B.; Szagri, D.; Nagy, B. The Effect of European Climate Change on Indoor Thermal Comfort and Overheating in a Public Building Designed with a Passive Approach. Atmosphere 2022, 13, 2052. https://doi.org/10.3390/atmos13122052
Fürtön B, Szagri D, Nagy B. The Effect of European Climate Change on Indoor Thermal Comfort and Overheating in a Public Building Designed with a Passive Approach. Atmosphere. 2022; 13(12):2052. https://doi.org/10.3390/atmos13122052
Chicago/Turabian StyleFürtön, Balázs, Dóra Szagri, and Balázs Nagy. 2022. "The Effect of European Climate Change on Indoor Thermal Comfort and Overheating in a Public Building Designed with a Passive Approach" Atmosphere 13, no. 12: 2052. https://doi.org/10.3390/atmos13122052
APA StyleFürtön, B., Szagri, D., & Nagy, B. (2022). The Effect of European Climate Change on Indoor Thermal Comfort and Overheating in a Public Building Designed with a Passive Approach. Atmosphere, 13(12), 2052. https://doi.org/10.3390/atmos13122052