Establishment of Crop Water Stress Index for Sustainable Wheat Production under Climate Change in a Semi-Arid Region of Pakistan
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Determination of Water Requirement
3.2. Vapor Pressure Deficit
3.3. Crop Water Stress Index
4. Results and Discussion
4.1. Soil Texture Analysis with Hydrometer
4.2. Chemical Analysis of Soil
4.3. Relationship between Canopy–Air Temperature Difference and Soil Moisture Content
4.4. Measurement of CWSI
4.5. Response of CWSI to Different Treatments
4.6. Analysis of Crop Yield and Irrigation Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braun, H.J.; Atlin, G.; Payne, T. Multi-location testing as a tool to identify plant response to global climate change. Clim. Chang. Crop Prod. 2010, 1, 115–138. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2016; Available online: http://www.fao.org/faostat/en/#data (accessed on 6 December 2018).
- Turral, H.; Burke, J.; Faurès, J.M. Climate Change, Water and Food Security (No. 36); Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahad, S.; Hussain, S.; Saud, S.; Hassan, S.; Tanveer, M.; Ihsan, M.Z.; Shah, A.N.; Ullah, A.; Khan, F.; Ullah, S.; et al. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol. Biochem. 2016, 103, 191–198. [Google Scholar] [CrossRef]
- Khokhar, B.; Hussain, I.; Khokhar, Z. Effect of different irrigation frequiencies on growth and yield of different wheat genotypes in Sindh. Pak. J. Agric. Res. 2010, 23, 3–4. [Google Scholar]
- Kaleri, A.A.; Baloch, A.W.; Baloch, M.; Wahocho, N.A.; Abro, T.F.; Jogi, Q.; Soomro, A.A.; Marri, A.; Bhutto, L.A. Heritability and correlation analysis in Bt and non-Bt cotton (Gossypium hirsutum L.) genotypes. Pure Appl. Biol. 2021, 5, 906–912. [Google Scholar] [CrossRef]
- Wajid, A.; Hussain, A.; Maqsood, M.; Ahmad, A.; Awais, M. Influence of sowing date and irrigation levels on growth and grain yield of wheat. Pak. J. Agric. Sci. 2002, 39, 22–24. [Google Scholar]
- Ibarra, S. Soil Moisture and Tensiometer Measurements Made to Assist the Management of Supplementary Irrigation of Maize in Eastern Ontario. Ph.D. Dissertation, McGill University Libraries, Montreal, QC, Canada, 1997. [Google Scholar]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Saeed, U.; Wajid, S.A.; Khaliq, T.; Zahir, Z.A. Optimizing irrigation and nitrogen for wheat through empirical modeling under semi-arid environment. Environ. Sci. Pollut. Res. 2017, 24, 11663–11676. [Google Scholar] [CrossRef]
- Zhang, H. Improving water productivity through deficit irrigation: Examples from Syria, the North China Plain and Oregon, USA. In Water Productivity in Agriculture: Limits and Opportunities for Improvements; CABI: Wallingford, UK, 2003; pp. 301–309. [Google Scholar]
- Hossain, A.; Sarker, M.A.Z.; Saifuzzaman, M.; Teixeira da Silva, J.A.; Lozovskaya, M.V.; Akhter, M.M. Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. Int. J. Plant Prod. 2013, 7, 615–636. [Google Scholar]
- Ahmad, A.; Ashfaq, M.; Rasul, G.; Wajid, S.A.; Khaliq, T.; Rasul, F.; Saeed, U.; Rahman, M.H.U.; Hussain, J.; Ahmad Baig, I.; et al. Impact of climate change on the rice–wheat cropping system of Pakistan. In Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments; World Scientific: Singapore, 2015; Part 2; pp. 219–258. [Google Scholar]
- Jackson, R.D. Soil moisture inferences from thermal infrared measurements of vegetations temperatures. In Digest 1981 International Geosciences and Remote Sensing Symposium; Institute of Electrical and Electronics Engineers: Washington, DC, USA; New York, NY, USA, 1981. [Google Scholar]
- Jackson, R.D. Canopy temperature and crop water stress. Adv. Irrig. 1982, 1, 43–85. [Google Scholar]
- Idso, S.B.; Jackson, R.D.; Pinter Jr, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Idso, S.B.; Reginato, R.J.; Farah, S.M. Soil-and atmosphere-induced plant water stress in cotton as inferred from foliage temperatures. Water Resour. Res. 1982, 18, 1143–1148. [Google Scholar] [CrossRef]
- Erman, F.; Li, Y.; Hu, Z.; Yang, J.; Min, D. Review on methods for water use planning in irrigation districts based on water balance. J. Drain. Irrig. Mach. Eng. 2022, 40, 294–301. [Google Scholar]
- Hou, Y.; Wang, Z.L.; Wenhao, Z.; Jifeng, D.; Yunqing, W.Y. Principal component analysis method for suitable water and fertilizer doses of drip irrigation grape in an extreme arid area. J. Drain. Irrig. Mach. Eng. 2021, 1, 89–95. [Google Scholar]
- Zhou, X.; Wang, R.L.; Chaonan, Z.C.; Liu, W.; Bi, H. Effects of water regulation on physiological characteristics and water use of apple-soybean alley cropping system. J. Drain. Irrig. Mach. Eng. 2021, 39, 410–418. [Google Scholar]
- Gao, J.Z.; Hongbin, Z.H.; Yuchun, B.A. Effects of water deficit on quality and yield of pepper under mulched drip irrigation in cold Oasis Region. J. Drain. Irrig. Mach. Eng. 2021, 39, 404–409. [Google Scholar]
- Yang, L.Z.; Beibei, H.Y.; Wang, Q.; Chen, X. Effects of Bacillus subtilis on growth of winter wheat and distribution of soil water and nitrogen under salt stress. J. Drain. Irrig. Mach. Eng. 2021, 39, 517–524. [Google Scholar]
- Ding, H.; Wang, Z.L.; Wenhao, Z.J.; Jia, H.; Wen, Y.; Zou, J. Effects of degradation film on soil hydrothermal and yield of drip irrigation cotton in extremely arid areas. J. Drain. Irrig. Mach. Eng. 2021, 39, 525–532. [Google Scholar]
- Zhang, K.; Diao, M.; Jing, B.; Zhang, X.; Wan, W.; Guo, P.; Han, W. Influence of irrigation quota and frequency on root growth and yield of processing tomato. J. Drain. Irrig. Mach. Eng. 2020, 38, 83–89. [Google Scholar]
- Li, X.; Zhang, C.; Yan, H.; Akhlaq, M.; Lanlan, Z.W.; Wang, J. Effects of biochar and irrigation on soil water retention and physiological characteristics of tomato in greenhouse condition. J. Drain. Irrig. Mach. Eng. 2022, 40, 317–324. [Google Scholar]
- Chen, S.; Hu, J.; Xiao, M.; Hu, X. Effects of irrigation regulation of rural domestic reclaimed water on soil nutrients in paddy field. J. Drain. Irrig. Mach. Eng. 2022, 40, 411–418. [Google Scholar]
- Li, X.M.A.; Juanjuan, S.X.; Shi, X.; Guo, X.; Lei, T. Effects of water saving and nitrogen reduction on tomato growth and utilization rate of water and nitrogen in greenhouse. J. Drain. Irrig. Mach. Eng. 2021, 39, 1056–1061. [Google Scholar]
- Irmak, S.; Haman, D.Z.; Bastug, R. Determination of crop water stress index for irrigation timing and yield estimation of corn. Agron. J. 2000, 92, 1221–1227. [Google Scholar] [CrossRef]
- Da Silva, B.B.; Rao., R.T.V. The CWSI variations of a cotton crop in a semi-arid region. J. Arid. Environ. 2005, 62, 649–659. [Google Scholar] [CrossRef]
- Erdem, Y.; Şehirali, S.; Erdem, T.; Kenar, D. Determination of crop water stress index for irrigation scheduling of bean (Phaseolus vulgaris L.). Turk. J. Agric. For. 2006, 30, 195–202. [Google Scholar]
- Erdem, Y.; Arin, L.; Erdem, T.; Polat, S.; Deveci, M.; Okursoy, H.; Gültaş, H.T. Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agric. Water Manag. 2010, 98, 148–156. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.J.; Fereres, E. Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agric. For. Meteorol. 2014, 198, 94–104. [Google Scholar] [CrossRef]
- Ali, A.; Zia, M.S.; Hussain, F.; Salim, M.; Mahmood, I.A.; Shahzad, A. Efficacy of different methods of potassium fertilizer application on paddy yield, K uptake and agronomic Efficiency. Pak. J. Agric. Sci. 2005, 42, 1–2. [Google Scholar]
- Manzoor, Z.; Awan, T.H.; Ahmad, M.; Akhter, M.; Faiz, F.A. Effect of split application of potash on yield and yield related traits of basmati rice. J. Anim. Plant Sci. 2008, 18, 120–124. [Google Scholar]
- Tanvir, M.A. Performance of Various Tree Species as Irrigated by Urban Wastewater. Ph.D. Dissertation, University of Agriculture, Faisalabad, Pakistan, 2010. [Google Scholar]
- Panda, R.K.; Behera, S.K.; Kashyap, P.S. Effective management of irrigation water for wheat under stressed conditions. Agric. Water Manag. 2003, 63, 37–56. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.J.; Idso, S.B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather. Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Wang, W.; Ran, H.; Song, T.; Guo, Y. Evaluation of the crop water stress index as an indicator for the diagnosis of grapevine water deficiency in greenhouses. Horticulturae 2020, 6, 86. [Google Scholar] [CrossRef]
- Gontia, N.K.; Tiwari, K.N. Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agric. Water Manag. 2008, 95, 1144–1152. [Google Scholar] [CrossRef]
- Alghory, A.; Yazar, A. Evaluation of crop water stress index and leaf water potential for deficit irrigation management of sprinkler-irrigated wheat. Irrig. Sci. 2019, 37, 61–77. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, J.; Dong, T.; Pattey, E.; Shang, J.; Tang, M.; Cai, H.; Saddique, Q. Coupling hyperspectral remote sensing data with a crop model to study winter wheat water demand. Remote Sens. 2019, 11, 1684. [Google Scholar] [CrossRef] [Green Version]
- Jin, N.; He, J.; Fang, Q.; Chen, C.; Ren, Q.; He, L.; Yu, Q. The responses of maize yield and water use to growth stage-based irrigation on the loess plateau in China. Int. J. Plant Prod. 2020, 14, 621–633. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, J.; Ming, B.; Xie, R.; Wang, K.; Hou, P.; Liu, G.; Zhang, G.; Chen, J.; Liu, W. Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates. Agric. Water Manag. 2021, 247, 106726. [Google Scholar] [CrossRef]
- Yuan, G.; Luo, Y.; Sun, X.; Tang, D. Winter wheat water stress detection based on canopy surface temperature. Trans. CSAE 2002, 18, 13–17, (In Chinese with English abstract). [Google Scholar]
Treatments | I a,b,c | II a,b,c | III a,b,c, | IV a,b,c |
---|---|---|---|---|
D0% | F | F1 | F | F |
D20% | F | M2 | M | M |
D40% | F | L3 | L | L |
D100% | F | N4 | N | N |
Source | DF | SS | MS | F | p |
---|---|---|---|---|---|
Block | 2 | 0.0066 | 0.00328 | ||
Treatment | 3 | 20.5102 | 6.83672 | 1662 | 0.0000 |
Error | 6 | 0.0247 | 0.00411 | ||
Total | 11 | 20.5414 |
Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Soil Type | Bulk Density (g·cm−3) | Field Capacity (%) |
---|---|---|---|---|---|---|
0–15 | 59 | 24 | 17 | Sandy loam | 1.55 | 22.7 |
15–30 | 57 | 23 | 18 | Sandy loam | 1.52 | 23.6 |
30–45 | 55 | 25 | 20 | Sandy loam | 1.54 | 25 |
45–60 | 60 | 24 | 16 | Sandy loam | 1.54 | 22 |
Depth (cm) | pH | EC dsm−1 | Nitrogen % | Phosphorus (ppm) | Potassium (ppm) |
---|---|---|---|---|---|
0–30 | 8 | 0.48 | 0.0110 | 3.15 | 110 |
30–60 | 8.3 | 0.17 | 0.0183 | 2.25 | 110 |
60–90 | 7.9 | 0.46 | 0.0202 | 3.18 | 110 |
Treatments | Applied Water (mm) | Yield (Ton ha−1) | WUE (kg ha−1) | Difference from D0% | p-Value | |
---|---|---|---|---|---|---|
Irrigation | Rainfall | |||||
2018–2019 | ||||||
D0% | 289 | 46 | 3.8 | 11.3 | - | - |
D20% | 252 | 3.6 | 12.4 | −1.1 | >0.05 | |
D40% | 215 | 3 | 11.5 | −0.2 | >0.05 | |
D100% | 39 | 0.6 | 6.6 | 4.7 | <0.05 | |
2019–2020 | ||||||
D0% | 309 | 40 | 3.8 | 11.5 | - | - |
D20% | 265 | 3.6 | 12.5 | −1 | >0.05 | |
D40% | 235 | 3 | 11.6 | −0.1 | >0.05 | |
D100% | 59 | 0.6 | 6.9 | 4.6 | <0.05 | |
2020–2021 | ||||||
D0% | 189 | 132 | 3.8 | 11.7 | - | - |
D20% | 145 | 3.6 | 12.8 | −1.1 | >0.05 | |
D40% | 115 | 3 | 12 | −0.3 | >0.05 | |
D100% | 30 | 0.6 | 4.5 | 7.2 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.I.; Saddique, Q.; Zhu, X.; Ali, S.; Ajaz, A.; Zaman, M.; Saddique, N.; Buttar, N.A.; Arshad, R.H.; Sarwar, A. Establishment of Crop Water Stress Index for Sustainable Wheat Production under Climate Change in a Semi-Arid Region of Pakistan. Atmosphere 2022, 13, 2008. https://doi.org/10.3390/atmos13122008
Khan MI, Saddique Q, Zhu X, Ali S, Ajaz A, Zaman M, Saddique N, Buttar NA, Arshad RH, Sarwar A. Establishment of Crop Water Stress Index for Sustainable Wheat Production under Climate Change in a Semi-Arid Region of Pakistan. Atmosphere. 2022; 13(12):2008. https://doi.org/10.3390/atmos13122008
Chicago/Turabian StyleKhan, Muhammad Imran, Qaisar Saddique, Xingye Zhu, Sikandar Ali, Ali Ajaz, Muhammad Zaman, Naeem Saddique, Noman Ali Buttar, Rao Husnain Arshad, and Abid Sarwar. 2022. "Establishment of Crop Water Stress Index for Sustainable Wheat Production under Climate Change in a Semi-Arid Region of Pakistan" Atmosphere 13, no. 12: 2008. https://doi.org/10.3390/atmos13122008
APA StyleKhan, M. I., Saddique, Q., Zhu, X., Ali, S., Ajaz, A., Zaman, M., Saddique, N., Buttar, N. A., Arshad, R. H., & Sarwar, A. (2022). Establishment of Crop Water Stress Index for Sustainable Wheat Production under Climate Change in a Semi-Arid Region of Pakistan. Atmosphere, 13(12), 2008. https://doi.org/10.3390/atmos13122008