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Abstract: Accurate information of crop growth conditions and water status can improve irrigation
management. The objective of this study was to evaluate the performance of SAFYE (simple algorithm
for yield and evapotranspiration estimation) crop model for simulating winter wheat growth and
estimating water demand by assimilating leaf are index (LAI) derived from canopy reflectance
measurements. A refined water stress function was used to account for high crop water stress.
An experiment with nine irrigation scenarios corresponding to different levels of water supply was
conducted over two consecutive winter wheat growing seasons (2013–2014 and 2014–2015). The
calibration of four model parameters was based on the global optimization algorithms SCE-UA.
Results showed that the estimated and retrieved LAI were in good agreement in most cases, with a
minimum and maximum RMSE of 0.173 and 0.736, respectively. Good performance for accumulated
biomass estimation was achieved under a moderate water stress condition while an underestimation
occurred under a severe water stress condition. Grain yields were also well estimated for both years
(R2 = 0.83; RMSE = 0.48 t·ha−1; MRE = 8.4%). The dynamics of simulated soil moisture in the top 20 cm
layer was consistent with field observations for all scenarios; whereas, a general underestimation
was observed for total water storage in the 1 m layer, leading to an overestimation of the actual
evapotranspiration. This research provides a scheme for estimating crop growth properties, grain
yield and actual evapotranspiration by coupling crop model with remote sensing data.

Keywords: winter wheat; crop model; remote sensing; leaf area index; soil moisture;
evapotranspiration

1. Introduction

Guanzhong Plain, located in central Shaanxi Province, is one of the important food production
districts in northern China. It produces about 60% of summer crops in production and accounts for
about 49.5% of the total cultivated land in area of the province [1] (National Bureau of Statistics (NBS)
of China; www.data.stats.gov.cn). Winter wheat is a major cereal crop in this region, comprising
about 90% of the summer grain production [2]. In 2016, about 3.9 million tons of wheat grain was
harvested in the Guanzhong Plain, making up 87% of total wheat grain production in the Province
(NBS). The average annual precipitation of the region is about 200 mm during winter wheat growth
period, accounting for only about half of the required amount by the crop [3,4]. Hence, irrigation is a
common practice to support winter wheat growth. However, due to insufficient water resources, only
31% of the cultivated area are sufficiently irrigated (NBS), leaving most of the fields under water deficit
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conditions. Timely and reliable information on crop growth states and water demand is critical for
making well-informed field management decisions.

Observation and simulation are two basic approaches to obtaining information on crop growth
status. Crop model simulation is a widely used method to indirectly obtain crop growth status variables
(e.g., leaf area index, biomass, and evapotranspiration (ET)) [5]. Many crop models, such as DSSAT-CSM,
EPIC, APSIM, WOFOST and STICS etc., have been developed and refined to successfully simulate
wheat growth and production under different soil moisture, fertility and salinity conditions [6–10].
Determination of model parameters, initial conditions and driving variables (meteorological data,
soil properties, field management etc.) is needed for using these models to simulate crop growth.
However, most of this information is difficult to obtain with sufficient confidence [11]. This issue is
more severe for complex models, for which a large number of parameters have to be calibrated with
prior knowledge or in situ observations [5,12].

The rapid development of remote sensing technology, such as Sentinel-2 and Landsat-8, provides
increased opportunities for mapping within-field variability of crop growth. Integrating remote sensing
derived crop growth variables into a crop growth model can help improve model performance. Leaf
area index (LAI) is a widely accepted crop growth variable in determining the exchange of energy and
mass between vegetation canopy and atmosphere in most land surface models [13–15]. Assimilating
LAI derived from remote sensing data into crop models has shown to be a feasible way for estimating
and forecasting crop yield at different regions [16–21]. However, most of these studies focused mainly
at crop final biomass and grain yield; very few has dealt with the dynamics of crop water consumption
and soil moisture [22–24]. Accurate estimation of crop water consumption and soil water storage
throughout the growing season can provide guidance for better irrigation decision making.

In this study, LAI derived from top-of-canopy (TOC) reflectance was assimilated into a crop model
to simulate winter wheat growth process and water demands. The SAFYE crop model, the Simple
Algorithm For Yield (SAFY) [25] with consideration of crop evapotranspiration_ENREF_22, was used.
Biomass accumulation in the model was based on the light use efficiency theory [26], with consideration
of the effects of water and temperature stresses. The main objective of this study was to develop
a simple method for model calibration by assimilating remote sensing data, and to derive reliable
information through model simulation for winter wheat growth monitoring, productivity evaluation,
and water demand assessment in an irrigation district. An optimized non-linear crop water stress
equation was developed and adapted for dryland crop growth. This study focused on both global
estimation accuracy and simulation performance under different irrigation scenarios. In addition
to biomass and yield estimation, the dynamics of soil moisture and crop water consumption were
also evaluated.

2. Materials and Methods

2.1. Study Area

The study was carried out in a typical irrigation agricultural district of Guanzhong Plain, Northwest
of China (34◦17′N, 108◦04′E, 506 m a.s.l) (Figure 1). Winter wheat-summer maize rotation is a common
practice of the region, dominating more than 80% of the total cropland. The region is characterized as
a typical continental monsoon climate in the semiarid warm temperate zone, with average annual
temperature, precipitation and potential evapotranspiration of 12.9 ◦C, 635.1 mm and 1500 mm,
respectively. The irrigation experiment was conducted at a water-saving irrigation station operated by
the Agricultural Soil and Water Engineering Laboratory. The soil at the experimental site is classified as
the loamy type, with mean soil hydraulic properties in the root zone of 0–80 cm depth of field capacity
of 0.31 cm3

·cm−3, wilting point of 0.12 cm3
·cm−3 and bulk density of 1.31 cm3

·cm−3.
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Figure 1. Location of the study area and land use distribution in Guanzhong Plain, Shaanxi, China. 
Data source: www.globallandcover.com. 

2.2. Experimental Design  

Nine irrigation scenarios were designed for two consecutive winter wheat growing seasons, 
2013–2014 and 2014–2015. Irrigation amount (expressed in depth (mm): cubic meter per hectare) and 
periods, two important factors in irrigation scheduling and implementation, were considered in the 
experimental design. According to the seasonal water demands of the winter wheat in this region 
[3,4], irrigation amount was determined at two levels, 80 mm (sufficient) and 40 mm (insufficient). 
For each plot, irrigation was applied three times at five growing stages (with two successive stages 
without irrigation), resulting in eight irrigation strategies with an annual total irrigation amount of 
either 120 mm or 240 mm. A reference treatment with 80 mm irrigation at each stage was designed 
as the healthy growth condition. Each deficit irrigation scenario had three replicates, while the 
reference treatment only had two replicates due to restrictions of plot space. Detailed irrigation 
scenarios are provided in Table 1. 

A total of 26 plots were developed. For precise water supply control, all experimental plots were 
under a large mobile shelter to prevent the impact of natural precipitation. The plot size was 2 m × 4 
m, with nine rows of plants. Spacing between neighboring plots was 0.4 m, and a 1.5 m deep 
waterproof layer was placed to prevent soil water movement between plots. The wheat was sown on 
15th October 2013 and 2014, and was harvested on 7th June 2014 and 2nd June 2015, respectively. 
Before sowing, the 0–20 cm soil layer of all plots was manually fertilized with total N of 140 kg⋅ha−1 
and P2O5 50 kg⋅ha−1, and then the soil was smoothed and flattened for sowing. Other crop 
management practices were also followed to control weeds, pests, and disease. 
  

Figure 1. Location of the study area and land use distribution in Guanzhong Plain, Shaanxi, China.
Data source: www.globallandcover.com.

2.2. Experimental Design

Nine irrigation scenarios were designed for two consecutive winter wheat growing seasons,
2013–2014 and 2014–2015. Irrigation amount (expressed in depth (mm): cubic meter per hectare) and
periods, two important factors in irrigation scheduling and implementation, were considered in the
experimental design. According to the seasonal water demands of the winter wheat in this region [3,4],
irrigation amount was determined at two levels, 80 mm (sufficient) and 40 mm (insufficient). For each
plot, irrigation was applied three times at five growing stages (with two successive stages without
irrigation), resulting in eight irrigation strategies with an annual total irrigation amount of either
120 mm or 240 mm. A reference treatment with 80 mm irrigation at each stage was designed as the
healthy growth condition. Each deficit irrigation scenario had three replicates, while the reference
treatment only had two replicates due to restrictions of plot space. Detailed irrigation scenarios are
provided in Table 1.

Table 1. Winter wheat irrigation scenarios design. The capital letter “I” with a subscript number
represents irrigation depth of either 80 mm or 40 mm at each growth stage; the capital letter “D” with a
subscript letter represents no irrigation at these stages, and the two letters following “D” are the first
letter of growth period; for instance, “DW-R” represents no irrigation at wintering and reviving stages.

Irrigation
Schedules

Irrigation Scenarios

I40DW-R I40DR-J I40DJ-H I40DH-F I80DW-R I80DR-J I80DJ-H I80DH-F I80

Wintering 0 40 40 40 0 80 80 80 80
Reviving 0 0 40 40 0 0 80 80 80
Jointing 40 0 0 40 80 0 0 80 80
Heading 40 40 0 0 80 80 0 0 80
Filling 40 40 40 0 80 80 80 0 80
Total

amount(mm) 120 120 120 120 240 240 240 240 400

A total of 26 plots were developed. For precise water supply control, all experimental plots were
under a large mobile shelter to prevent the impact of natural precipitation. The plot size was 2 m
× 4 m, with nine rows of plants. Spacing between neighboring plots was 0.4 m, and a 1.5 m deep
waterproof layer was placed to prevent soil water movement between plots. The wheat was sown
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on 15th October 2013 and 2014, and was harvested on 7th June 2014 and 2nd June 2015, respectively.
Before sowing, the 0–20 cm soil layer of all plots was manually fertilized with total N of 140 kg·ha−1 and
P2O5 50 kg·ha−1, and then the soil was smoothed and flattened for sowing. Other crop management
practices were also followed to control weeds, pests, and disease.

2.3. Data Collection

2.3.1. Crop Data

Crop development was monitored regularly throughout the winter wheat growth cycle. LAI,
aboveground biomass, and grain yield data were collected. LAI was measured using a SunSCAN
Canopy Analysis System (Delta-T Devices Ltd., Cambridge, UK). The 64 photosynthetically active
radiation (PAR) sensors of the SunSCAN were integrated into a 1-m long probe, measuring the incident
and transmitted PAR to determine LAI. All measurements were carried out under cloudless condition
during midday. The sensor probe was placed along the row direction in the middle of five rows of
each plot. For each plot, measurements were taken as the average of three readings using a palmtop.

After the measurements of LAI, the aboveground portions of 15 randomly selected plants were
removed. They were then dried in an oven at 75◦C for 48 h to determine the dry biomass. The
number of plants per 1 m2 was counted to determine plant density. The dry biomass per unit area was
calculated by multiplying dry mass per plant with the plant density. Grain was harvested within 1 m2

area at full maturity stage, threshed and air-dried to constant weight to determine the final grain yield.

2.3.2. Canopy Spectral Measurements

Crop canopy reflectance spectra were measured under cloudless and windless conditions between
11:00 and 13:00 local time, using an ASD FieldSpec 3 Spectroradiometer (Analytical Spectral Device,
Inc., Boulder, CO, USA). At each plot, the measurement was made at the most uniform, representative,
and pest-free area. The instrument was equipped with a 25◦ field-of-view (FOV) fore-optics, and spectral
measurements were taken at a height of 1.3 m above the top of canopy with sensor looking vertically
downward, covering three rows of plants. Ten scans were made at each plot, with a reference
measurement over a white panel every five minutes. The reflectance spectra were smoothed using a
Savitzky-Golay filtering (with a quadratic polynomial of five spans) to reduce instrument noise.

2.3.3. Soil Moisture

Simultaneous to other measurements, soil moisture was measured using a neutron probe (Nanjing
Chishun Science and Technology Co., Ltd., China), in the 0−100 cm soil profile at five layers with
20 cm interval. The actual crop evapotranspiration (ETa) was calculated using a water balance function
(Equation (8)).

2.3.4. Meteorological Data

The meteorological data, including air temperature, solar radiation, wind speed, relative air
humidity, and precipitation, were automatically collected by a Dynamet weather station (Dynamax Inc.,
Houston, TX, US). Air temperature and relative humidity were measured using a temperature/humidity
sensor (HMP60, Campbell Scientific Inc., Logan, UT, US) at 2 m above the ground. Solar radiation
was recorded with a silicon radiation sensor (LI–200SZ, Li-Cor Inc., Lincoln, NE, US). Wind speed
and direction were also measured at the same height. All data was regularly logged in a data logger
(CR1000, Campbell Scientific Inc., Logan, UT, US). Daily solar radiation, mean air temperature and
reference evapotranspiration (ET0) during the crop growing season are shown in Figure 2.
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Figure 2. Daily meteorological data, calculated reference evapotranspiration (ET0) and irrigation
amount dynamics during two consecutive growing seasons.

2.4. LAI Estimation from Canopy Spectral Reflectance

Several methods can be used to retrieve crop LAI from spectral reflectance, such as inversion
from radiation transfer model, estimation using a vegetation index and non-parameter regression [27].
The partial least squares regression (PLSR), taking full advantage of spectral information, was used to
retrieve crop LAI in this study. PLSR constructs several components to interpret both the independent
variables of spectral reflectance and the dependent variable of LAI. In this study, the optimum number
of components was determined using a 10-fold cross-validation. Detailed information on the estimation
can be found in Zhang, et al. [28].

2.5. The SAFYE Model

The SAFYE model, developed by Duchemin, et al. [29] and Battude, et al. [30], was used in this
study. This model couples the original SAFY crop growth model [25] with the FAO-56 soil water budget
model [31] to simulate crop growth and soil moisture at a daily step, including LAI, aboveground
biomass, grain yield, crop transpiration, and soil water content.

The SAFYE model simulates daily green LAI (GLAI) and biomass based on the light-use efficiency
(LUE) theory [26]. The main model processes were as follow: daily aboveground matter (Md) was
accumulated as a conversion from the absorbed radiation into chemical energy, calculated as a function
of LUE and absorbed photosynthetically active radiation (APAR) (Equation (1)). Besides, effects from
the temperature (Ft) and soil water (Ks) on LUE were also considered:

∆Md = APAR× LUE× FT ×KS (1)
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The APAR was calculated from LAI and solar radiation (Rg) using the Beer-Lambert function [32]
(Equation (2)). The function parameters εc and k were climatic efficiency factor (~0.48) and the light
extinction coefficient of canopy, respectively.

APAR = εc ×Rg ×
(
1− e−k×LAI

)
(2)

The FT is a temperature stress factor, which can be calculated by a quadratic polynomial function
derived from the STICS model [33]. The KS is water stress factor, calculated as a function of soil
moisture. Battude et al. [30] assumed a linear function for crop water stress in SAFYE. Considering
that the drought tolerance of wheat is not sensitive to mild water stress condition, a nonlinear stress
coefficient of KS was incorporated to the SAFYE model in this study. Specifically, a convex stress
response function was used following the AquaCrop model [34,35] (Equation (3). The value of KS

varied between 1 (no stress) to 0 (full stress) and was determined by a curve shape factor of f and
relative depletion of soil moisture of Srel.

Ks = 1−
eSrelf − 1

ef − 1
(3)

The Srel, defined as the relative depletion of soil moisture, was calculated by the ratio of root
depth layer soil moisture (SMr, mm) to total available moisture (TAW, mm) (Equation (4)). Crop water
stress would not develop immediately following the start of soil moisture relative depletion. The range
of water stress was constraint by two parameters, upper (Pu) and lower (Pl) threshold limits, which
means that plants will be subject to water stress when relative water depletion is less than Pu and
becomes fully stressed when depletion is less than or equal to Pl.

Srel =


1, pu ≤ Srel

pu−
SMr
TAW

pu−pl
, pl < Srel < pu

0, Srel ≤ pl

(4)

The daily LAI variation includes increase with leaf generation and decrease with leaf senescence.
Daily new LAI at the vegetative stage is determined based on the biomass partitioning concept
(Equation (5)). The LAI decrease at senescence stage is calculated when the accumulated temperature
(AT, (◦C)) reaches threshold parameter (STT, (◦C)), and the decreasing ratio is decided by parameter Rs
(◦C·d−1) (Equation (6)). The leaf partitioning at the reproductive stage is driven by two temperature
parameters, Pla and Plb (Equation (7)).

∆LAI+ = ∆MS,d × Pl× SLA (5)

∆LAI− = LAIt−1 ×
(AT− STT)

Rs
(6)

Pl = 1− PlaePlb×AT (7)

For soil water balance, water transport among soil, plant and atmosphere in SAFYE’s water
balance module was determined by water budget equation (Equation (8)):

∆SW = P + I + GF− ET− SR−DP (8)

where P, I, GF, ET, SR and DP represent precipitation, irrigation, groundwater flow, evapotranspiration,
runoff, and deep percolation, respectively. SAFYE simplifies the water transfer processes in three
soil layers (evaporation layer, root layer, and deep layer). The daily change of soil water storage was
calculated from different water inflow and outflow sources.
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Evapotranspiration is the most important component in soil water consumption, consuming
almost all water storage in root zone. Crop actual evapotranspiration (ETa) is calculated using the
FAO-56 dual crop coefficient model, which consists of a crop transpiration component and a soil
evaporation component [31]. The crop water stress is described by multiplying the basal crop coefficient
with the water stress coefficient of Ks (Equation (9)).

ETa = (Ke + Kcb ×Ks) × ET0 (9)

Soil water evaporation mainly happens in topsoil and is impacted by crop canopy cover. Soil
evaporation coefficient Ke is calculated using a semi-empirical equation based on evaporation
reduction coefficient (β) and relative depletion soil moisture in top of 0–20 cm soil layer (RSM) [30,31]
(Equation (10)):

Ke = (1−CC) × [1− (1−RSM)β] (10)

where CC is canopy cover, calculated from crop LAI using a function given by Nielsen et al. [36]
(Equation (11)):

CC = 94.00
(
1− e−0.43×LAI

)0.52
(11)

The basal crop coefficient Kcb represents crop potential transpiration rate when soil is dry in the
top layer while moisture is sufficient in the root zone so that the crop does not experience water stress.
The value of Kcb is considered to be corrected by wind speed, relative humidity and plant height in
FAO 56 method. However, this method is not suitable for operational applications as many of these
parameters are unavailable at regional scale. In this study, a semi-empirical equation was used to
estimate Kcb from LAI (Equation (12)) [37]:

Kcb = Kcb,max
(
1− eKtrp×LAI

)
(12)

2.6. Calibration of SAFYE Parameters

The common input variables (Table 2) for crop growth modeling are daily average temperature
(Ta), incoming global radiation (Rg), precipitation (P), reference evapotranspiration (ET0), irrigation (I),
and initial soil moisture content (SM0). The reference ET0 was derived from meteorological data (e.g., air
temperature, humidity, radiation) using the FAO Penman-Monteith method [31] (http://www.fao.org/).

Other parameters in SAFYE (Table 2) require careful calibration before model simulation. The
parameters in the crop model can be classified into two categories, conservative and specific. The
conservative parameters are general to a given species, without significant change in most cases. They
can be obtained from prior knowledge or literatures. Such parameters include εc, Tmin,opt,max, Kcb,max

etc. The εc was usually a constant, and the value was fixed to 0.48 [38]. Daily mean temperature is
used in SAFYE to restrict or promote crop growth. The optimal temperature for wheat growth is
about 18◦C, and the range of temperatures for wheat to grow is from 0◦C (Tmin) to 26◦C (Tmax) [39].
The parameters Kcb,max and Ktrp were determined as 1.07 and 0.84 [37], as recommended in FAO-56
documentation [31]. The values of pu, pl and f were fixed to 0.3, 0.65 and 3, assuming a moderate water
tolerance [40,41]. The general root expansion rate (Kz) of wheat is about 0.8–1.2 mm·d−1◦C−1 [33],
and was set to 0.9 mm·d−1◦C−1 in this study [42]. Theoretically, LUE is almost constant for a given
crop, but could vary in different natural ecosystems and cultivars. Most studies reported that LUE
of wheat was about 2.0–2.2 g·MJ−1 [43–45]. The LUE was assumed to be a constant and was set to
2.0 g·MJ−1 in this study. Other parameters in SAFYE could be calibrated using in situ measurement,
such as k, SLA, and HI. The parameters of k, SLA and HI were calibrated to 0.53, 0.019 and 0.34 using
in situ data. The main parameters are presented in Table 2.

Non-conservative parameters need to be adjusted by cultivar, environment and management
practices. As referred to in the section, crop growth is mainly determined by four parameters (Pla, Plb,
STT and Rs), which were optimized in this study. The data assimilation approach was adopted in this

http://www.fao.org/
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study for parameter calibration, by minimizing the difference between simulated time-series LAI and
the measured or estimated LAI from canopy reflectance. The Root Mean Square Error (RMSE) was
used as the merit function for data assimilation and parameter calibration (Equation (13)):

min→ RMSE =

√√
1
n

n∑
i=1

(LAIobs − LAIsim)2 (13)

where LAIobs,i and LAIsim,i are the retrieved and simulated LAI, respectively. n is the numbers of
observations for a plot during a growing season.

Table 2. Main inputs, outputs, and parameters used in SAFYE model for calibrating and simulating
winter wheat during 2013/2014 and 2013/2015 growing seasons.

Notation Description Unit Value Sources

Inputs Rg Daily incoming global radiation MJ m−2

·d−1

Ta Daily mean air temperature ◦C
P Daily precipitation mm

ET0 Daily reference evapotranspiration mm
SM0 Initial soil moisture m3

·m−3

Parameters εc Climatic efficiency - 0.48 L
Md0 Initial dry aboveground biomass g·m−2 5.3 D

k Light extinction coefficient - 0.53 M
Tmin,opt,max Temperature for growth ◦C 0,18,26 L

SLA Specific leaf area m2
·g−1 0.019 M

D0 Day of plant emergence day 10 M
Pla Partition-to-leaf function: par a - 0.589 C
Plb Partition-to-leaf function: par b - 0.00023 C
STT Sum of temperature for senescence ◦C 963 C
Rs Rate of senescence ◦C·d−1 14937 C

LUE Light-use efficiency g·MJ−1 2.0 L
θFC Field capacity m3

·m−3 0.31 M
θWP Wilting Point m3

·m−3 0.12 M
Kcb,max Maximum crop basal coefficient - 1.07 L

Ktrp Coefficient between LAI and Kcb - 0.84 L
Kz Root growth rate m ◦C·d−1 0.0009 L

pu,pl thresholds of soil water depletion - 0.3, 0.65 L
f Water stress function curve shape - 3 L
β Evaporative reduction coefficient - 0.94 L

HI Harvest index - 0.34 M

Outputs LAI Daily leaf area index m2
·m−2

Md Daily dry aboveground biomass g·m−2

Yield Grain yield g·m−2

SM Daily soil moisture m3
·m−3

ETa Crop evapotranspiration mm

D—Default, C—Calibrated, M—Measured, L—Literature.

The SCE-UA (Shuffled complex evolution method developed by Duan, et al. [46] was used in this
study for the optimization process. Compared to other optimization algorithms (e.g., PSO and GA),
the concept of competitive and shuffled complex evloution used in the method is not sensitive to the
initial values of the parameters, which could prevent convergence to a local opmimal solution [47,48].
Setting reasonable variation ranges for the parameters can improve the efficiency of optimization. The
ranges of the four parameters (Pla, Plb, STT, and Rs) were determined as: Pla [0.1–0.7], Plb [0.0001–0.001],
STT [500–1600] and Rs [5000–20000] according to previous studies [46,49]. The model was calibrated
using the data of unstressed healthy plots (I80) during the 2013–2014 growing season. To reduce the
uncertainty due to the unique solution in one optimization process, 1000 repetitions were conducted
and the median value of the frequency for each parameter optimal solution was selected. The values
of the four parameters optimization are presented in Table 2.
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After the calibration procedure, all parameters were fixed and the model was applied to simulate
LAI, biomass, ETa and water balance under different irrigation scenarios in the two growing seasons.
The grain yield was determined by multiplying the total aboveground biomass at full maturity with
the harvest index (HI). The estimated LAI, biomass, ETa and soil moisture were evaluated against
field measurement data. Several statistical criteria including coefficient of determination (R2), RMSE,
relative RMSE (RRMSE), relative error (RE) and mean relative error (MRE) were used to evaluate the
performance of the model corresponding to different water stress condition.

3. Results

3.1. Accuracy of LAI Estimation from Spectral Reflectance Data

Comparisons between in situ measured and estimated LAI from spectral reflectance using the
PLSR method are shown in Figure 3. The results show good estimation accuracy with a R2 of 0.89 and
RMSE of 0.42 m2

·m−2. We thus considered that the retrieved LAI was acceptable for assimilating into
the SAFYE model.
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 Kz Root growth rate m °C∙d−1 0.0009 L 
 pu,pl thresholds of soil water depletion - 0.3, 0.65 L 
 f Water stress function curve shape - 3 L 
 β Evaporative reduction coefficient - 0.94 L 
 HI Harvest index - 0.34 M 
Outputs LAI Daily leaf area index m2∙m−2   
 Md Daily dry aboveground biomass g∙m−2   
 Yield Grain yield g∙m−2   
 SM Daily soil moisture m3∙m−3   
 ETa Crop evapotranspiration mm   

D—Default, C—Calibrated, M—Measured, L—Literature. 
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3.2. Evaluation of the SAFYE Model Simulation

3.2.1. Leaf Area Index

A comparison between the simulated and retrieved LAI for the nine irrigation scenarios through
the two growing seasons is shown in Figure 4. The simulated LAI had good agreement with estimated
LAI for most of the irrigation scenarios, with a minimum error of 0.173 m2

·m−2. Results showed that
all five irrigation scenarios of 80 mm irrigation amount had a higher accuracy (RMSE: 0.173–0.320,
2013–2014; RMSE: 0.272–0.541, 2014–2015) than those of 40 mm irrigation amount (RMSE: 0.239–0.459,
2013–2014; RMSE: 0.270–0.736, 2014–2015) in both growing seasons. For both irrigation levels (40 mm
or 80 mm) in both years, simulation accuracy in the later stages of water deficit scenarios (DJ-H, DH-F)
was better than that of the early stages (DW-R, DR-J).The accuracy, assessed using RRMSE as the global
simulation accuracy, is considered to be excellent when RRMSE<10%, good when 10%< RRMSE <20%,
fair when 20% < RRMSE <30%, and poor if the RRMSE is >30% [50]. Excellent accuracy was achieved
in late deficit stages (e.g., I80DJ-H and I80DH-F), and fair or even poor in I40DW-R and I40DR-J. However,
the inconsistent results were also presented in scenarios DW-R and DR-J, with the overestimation of
LAI in 2013–2014 and underestimation in 2014–2015. Therefore, the performance of the model for
responding early water deficit and later re-irrigated scenarios were imperfect.
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9 irrigation scenarios during the growing seasons of 2013–2015. (a) Results in 2013–2014 growing
season; (b) Results in 2014–2015 growing season. The lines, scatters and error bars represent daily-series
of simulated LAI/Md, retrieved LAI and in situ Md, and standard error, respectively. (Similarly
hereinafter).

3.2.2. Aboveground Biomass

The seasonal dynamics of the simulated dry matter was consistent with in situ measured dry
matter in both growing seasons (Figure 4). The performance was similar to that of LAI, with an
acceptable agreement in late water deficit stages and relatively large discrepancy in the early stages.
Results revealed that simulation accuracy increased with delayed water deficit stage for both seasons.
Obvious underestimation were observed for both growing seasons for the treatments of 40 mm
irrigation depth (I40DW-R, I40DR-J, I40DJ-H and I40DH-F), with the maximum RRMSE reaching 33%.
Large deviation appeared from 180 days after sowing and continuously expended to maximum at the
end of stage.

3.2.3. Grain Yield

Winter wheat grain yield was calculated by multiplying the final aboveground plant dry matter a
HI. A mean value was used for HI and was derived from a global regression analysis of the field data
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(Figure 5). The ratio of grain yield to final aboveground ranged was from 0.28 to 0.43 for all irrigation
scenarios, and the regression coefficient for all the samples was 0.34. The regression coefficient is within
the ranges of HI found in literatures [51,52]. The grain yield simulation of the remaining plots showed
a good agreement with in situ measured yield for all irrigation scenarios (R2 = 0.83; RMSE = 0.48 t·ha−1;
RRMSE = 9.5%; MRE = 8.4%) (Figure 6). Grain yield in 2015 was higher than that in 2014 due to
comparatively more favorable meteorological conditions and initial soil moisture. As aforementioned,
the values of simulated Md were generally lower than that of measured Md in field of 40 mm irrigation
scenarios, while the results of grain yield were all close to the 1:1 line, suggesting that the actual HI
was close to that obtained through regression analysis (0.34).
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3.2.4. Soil Moisture

Soil moisture simulations for the top 0.2 m and 1 m soil layers were quantitatively evaluated
against the in situ measured data (Figure 7). For the top 0.2 m soil layer, dynamics of the simulated
soil moisture follow the variation of the measured moisture consistently for all irrigation scenarios in
the two growing seasons, with the maximum and minimum RMSE of 3% and 1.8% in 2014 and 2.8%
and 1.7% in 2015 respectively. The simulation performance was comparable for 40 mm and 80 mm
irrigation levels. Discrepancies of soil moisture simulation mainly exist in long-term water deficit and
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rapid declining stages after irrigation. The assumption of the water balance model is that, soil moisture
cannot exceed field capacity and fall below permanent wilting point.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 19 
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For the root zone, the SAFYE model could simulate the soil moisture reasonably well in the early
stage. However, with increasing root depth (about 100 days after sowing), the difference between the
simulated and measured moisture increased (Figure 7). In general, the simulated total soil water content
followed the trend of the actual measured values, although a general tendency of underestimation
was observed after about 100 days from sowing, when the winter wheat was at the dormancy stage.
The rapid decrease in soil moisture storage indicated that soil moisture was consumed to supply
crop growth, reflecting the continuous rise of LAI and dry matter (Figure 4). During the later stage
(about 200 days after sowing), the difference between simulated and measured soil moisture increased
gradually due to the cumulative deviation from the early stages. The relatively higher simulation
errors were observed under early water deficit scenarios (e. g., I40/80DW-R) than that in other scenarios.
This suggests that, although the crop water stress module was optimized using a nonlinear function,
variation of soil moisture with crop development cannot be adequately simulated.
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3.2.5. Crop Evapotranspiration

Crop evapotranspiration plays an essential role in the soil-plant-atmosphere system. Timely
and accurate estimation of evapotranspiration is important for determining crop water demand and
regulating irrigation schedules. Table 3 shows the simulation results of the actual evapotranspiration
(ETa) during the entire winter wheat growing period. In general, the dynamics of the simulated
ETa fits well with the measured ETa (R2 = 0.97, RMSE = 43.4 mm, MRE = 17.9%), although with
an overestimation.

Table 3. Statistics of simulated and measured actual evapotranspiration (ETa) for winter wheat in two
consecutive growing seasons. The RE represented the relative error.

Irrigation
Scenarios

2013–2014 2014–2015

ETa (mm) ETa (mm)

Obs. Sim. RE (%) Obs. Sim. RE (%)

I40DW-R 177 218 23.5 181 233 28.6
I40DR-J 177 230 29.6 188 243 29.1
I40DJ-H 179 215 20.0 191 233 21.8
I40DH-F 185 205 10.3 188 217 15.5
I80DW-R 256 297 16.0 263 316 19.8
I80DR-J 268 329 23.1 301 356 18.5
I80DJ-H 294 344 17.0 282 329 16.4
I80DH-F 291 321 10.3 298 349 17.1

I80 414 421 1.5 429 453 5.5

The simulated ETa was about the same for the two growing seasons for all irrigation scenarios,
ranging from 205 to 421 mm in the 2013–2014 growing season and from 217 to 453 mm in the 2014–2015
growing season. The overestimation was more than 10% for most irrigation scenarios except for the
sufficient irrigation treatments (I80). The maximum and minimum relative error were 29.1% and 29.1%
for I40DR-J and 1.5% and 5.5% for I80 in both seasons, respectively. The simulation confirmed the
previous results that, excessive soil moisture was consumed for maintaining crop growth; from which,
the general overestimation of ETa for all scenarios was observed. The results suggest that the model
had produced a higher accuracy in estimating crop ETa for mild water stress conditions (total 240 mm
irrigation depth) and crop water consumption in later period of water deficit scenarios (DH-F).

4. Discussion

Increased model complexity does not necessarily increase model robustness [53,54]. The SAFYE
model was designed to simulate crop growth and water demand using a series of simple procedures,
which are suitable for regional-scale applications or under unknown initial conditions.

Model calibration is an essential process leading to successful model applications. In contrast to
most model calibrations using field measured data, this study conducted model calibration through
assimilation of remotely sensed crop variables (e.g., LAI, canopy cover and biomass) into a crop model.
Remote sensing data provides a means for acquiring spatial-temporal information of crop variables.
Crop LAI, the most commonly used indicator in both agronomy and geoscience, was used as state
variable assimilated into the SAFYE model in this study to calibrate four main parameters, Pla, Plb, STT,
and Rs that control crop growth and senescence processes. These parameters were calibrated based on
a typical condition (e.g., sufficient irrigation scenarios (I80)) and remain unchanged and then applied
to other scenarios using stress coefficients (e.g., Ks). Different calibration strategies can be found in
literature. For instance, Claverie, et al. [38] and Dong, et al. [16] considered that parameters were crop
specific for which statistical analysis can be adopted for calibration. Battude, et al. [55] pointed out
that calibration needs to be conducted at the field level because variability such as crop species or
management practices (e.g., plant seeding date) might be field specific.
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The simulated LAI showed good accuracy for sufficient irrigation and moderate deficit irrigation
scenarios in both growing seasons (Figure 4), whereas the accuracy was low for severe water deficit
scenarios (I40), with greater uncertainty especially at the early stages of water deficit scenarios (DW-R

and DR-J). The consistent results on biomass simulation in both seasons showed good agreement
at 80 mm irrigation level. Obvious underestimations appeared at 40 mm irrigation level, reflecting
intense water stress response especially during the later stages. Temperature stress (FT) and water
stress (Ks) are the two main down regulating factors to crop biomass accumulation (Equation (1)).
Underestimation of dry matter could be attributed to inadequate modeling of these stress factors.

Figure 8 depicts the seasonal variation of water stress coefficient. Large differences of crop stress
were observed between 40 and 80 mm irrigation treatments. Under early deficit scenarios (DW-R),
long-term water stress at 170 days result in a Ks lower than 0.2. The discrepancies increased during the
later stages, with frequent stresses under 40 mm scenarios and with almost no stress under 80 mm
scenarios. Winter irrigation could delay potential stress period and reduce the level of stress level.
Although the nonlinear stress equation was integrated into the model to optimize stress estimation in
the water balance module, biomass accumulation of the 40 mm irrigation scenarios at the later stage
was impacted by severe water stress, resulting in an underestimation. Throughout the crop growing
season, the threshold of water stress changes with varying water demands at different growth stages
and are influenced by meteorological conditions as well [56]. This is a promising way to adjust the
stress threshold at different phenological phases.
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The performance of the SAFYE model was satisfactory for simulating winter wheat growth and
productivity in most cases using a series of simple nodules. It has the same challenges as some
complex models developed for irrigation scheduling [57] in simulating crop growth under drought
conditions. Results from this study confirmed the point suggested by Claverie et al. [38] the original
SAFY model, which is not sufficient in most cases of severe water deficits even with the stress functions
integrated. Although underestimation of dry aboveground matter happens under some scenarios, the
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comparison between observed and estimated grain yield showed very good performance (R2 = 0.83;
RMSE = 0.48 t·ha−1; MRE = 8.4%), likely due to the compensation effects of HI (Figures 5 and 6).
Theoretically, the harvest index is not just a coefficient that representing efficiency from biomass to
grain yield but is built from flowering stage to maturity. The change of HI is a complex process; it could
rise or fall depending on severity of the level of stress, the duration and the combined environment of
crop production [34]. Taking a complex model of AquaCrop as an example, the HI is divided into
reference harvest index (HI0) for non-stressed condition and an adjustment factor for interpreting
the effect of water stress, heat stress, even cold stress. The daily increase of HI is assumed obeying
a logistic function. The adjustment factor can be positive (water stress before yield formation) and
negative (water stress affecting stomata closure and pollination). Steduto, et al. [58] suggested that HI
could decline to as low as 0.2–0.3 when water stress occurred after the flowering stage or mismatched
with the production environment. Therefore, several modules and tens of parameters integrated to
reveal HI could lead to a significant reduction in the feasibility of the assimilation systems.

In this study, variations of soil moisture and crop water consumption were simulated using the
SAFYE model with a non-linear water stress function. The convex function fits the response of winter
wheat crop to water stresses nicely. Most of the discrepancies were observed when soil moisture
changed suddenly after irrigation because of rapid water infiltration to deeper soil layers (Figure 7).
At the root zone, however, large underestimations were observed when simulating total available
water content (Figure 7). This underestimation corresponds to a global overestimation of the ETa
(Table 3). This finding is in agreement with what has been reported by Duchemin et al. [29], who
observed a 20% error in ETa model simulation compared to the measurements by eddy covariance.
The overestimation of water demands provide false information to decision maker for more irrigation
than actually needed.

5. Conclusions

This study investigated the use of SAFYE model to simulate winter wheat growth and estimate
crop water demands through a data assimilation approach.

Crop leaf area index (LAI) could be accurately retrieved from canopy spectral reflectance data
using a partial least square regression method (PLSR). The SAFYE model can be well calibrated
by assimilating the retrieved LAI for winter wheat growth simulation under different irrigation
scenarios. The calibrated model can well capture crop growth (LAI) in most cases, but showed elevated
uncertainty in early water deficit scenarios, especially when using half irrigation amount (I40) where
crop is subjected to more severe water stress.

The simulation of time-series of aboveground biomass exhibits a consistent trend, showing
good performance for mild water stress scenarios. A general overestimation occurs for severe water
deficit scenarios (total 120 mm) 180 days after sowing. Despite overestimation for some irrigation
scenarios, results of the final simulated grain yield were in good agreement with observation for all
irrigation scenarios (R2 = 0.83; RMSE = 0.48 t·ha−1; MRE = 8.4%) for both years. With respect to water
consumption, the model had a good adaptability for simulating the dynamics of soil moisture at
the top 20 cm layer for all irrigation scenarios. Most simulation errors occurred when soil moisture
was below wilting point or at the maturity phenological stage. The general underestimations of the
total water content in 1 m soil depth were observed after 100 days when winter wheat began to tiller,
suggesting that the water demands for crop growth and productivity were overestimated. Such results
were consistent with the comparison in crop actual evapotranspiration (ETa) that estimated ETa were
over than in situ measured except for sufficient irrigation scenarios (I80).

This study demonstrates that high potential of the SAFYE model for monitoring crop growth and
estimating productivity and water consumption under different irrigation scenarios when with the aid
of remote sensing data assimilation. Given the encouraging results, however, further improvements
are warranted. For instance, application of the model at field or regional scale can be more complex
than at plot scale due to the added variability in soil properties, crop cultivars, planting and irrigation
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patterns etc. Furthermore, the overestimation in water demands can cast false information in the
decision-making process.

Author Contributions: Conceptualization, J.L., E.P. and J.S.; Formal analysis, C.Z.; Funding acquisition, H.C;
Investigation, M.T., and Q.S.; Methodology, C.Z. and T.D.; Project administration, E.P. and H.C.; Resources, M.T.
and Q.S.; Software, T.D.; Supervision, H.C.; Validation, J.L. and J.S.; Writing—review & editing, C.Z., J.L., T.D.
and J.S.

Funding: This research was funded by the National Basic Research Program of China (973 Program), grant
number 2016YFC0400201.

Acknowledgments: The authors would like to acknowledge the Institute of Water-saving Agriculture in Arid
Areas of China, Northwest A&F University for providing the experiment facilities. The scientific guidance and
field data collection by Yunfei Wang is highly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bai, J.J.; Yu, Y.; Di, L. Comparison between TVDI and CWSI for drought monitoring in the Guanzhong Plain,
china. J. Integr Agric. 2017, 16, 389–397. [CrossRef]

2. Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Garcia Vila, M.; Mejias Moreno, P.
Aquacrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62,
351–360. [CrossRef]

3. Chen, F.; Cai, H.; Wang, J.; Ma, H. Estimation of evapotranspiration and crop coefficients of winter wheat
and summer maize in Yangling zone. Trans. CSAE. 2006, 22, 191–193.

4. Wang, W.; Feng, H. Water requirement and irrigation systems of winter wheat: CROPWAT-DSSAT model
solution in Guanzhong district. Chin. J. Eco-Agric. 2012, 20, 795–802. [CrossRef]

5. Huang, J.; Gomez-Dans, J.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.; Wu, Y.; et al.
Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol.
2019. [CrossRef]

6. Ahmed, M.; Akram, M.N.; Asim, M.; Aslam, M.; Hassan, F.U.; Higgins, S.; Stöckle, C.O.; Hoogenboom, G.
Calibration and validation of APSIM-wheat and CERES-wheat for spring wheat under rainfed conditions:
Models evaluation and application. Comput. Electron. Agric. 2016, 123, 384–401. [CrossRef]

7. Lu, C.; Fan, L. Winter wheat yield potentials and yield gaps in the north china plain. Field Crop. Res. 2013,
143, 98–105. [CrossRef]

8. Araya, A.; Kisekka, I.; Gowda, P.H.; Prasad, P.V.V. Evaluation of water-limited cropping systems in a
semi-arid climate using DSSAT-CSM. Agric. Syst. 2017, 150, 86–98. [CrossRef]

9. Gaydon, D.S.; Balwinder, S.; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.;
Chaki, A.K.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crop. Res. 2017, 204,
52–75. [CrossRef]

10. Sansoulet, J.; Pattey, E.; Kröbel, R.; Grant, B.; Smith, W.; Jégo, G.; Desjardins, R.L.; Tremblay, N.; Tremblay, G.
Comparing the performance of the STICS, DNDC, and DAYCENT models for predicting n uptake and
biomass of spring wheat in eastern Canada. Field Crop. Res. 2014, 156, 135–150. [CrossRef]

11. Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective
remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth
Obs. Geoinf. 2007, 9, 165–193. [CrossRef]

12. Wu, M.; Scholze, M.; Voßbeck, M.; Kaminski, T.; Hoffmann, G. Simultaneous assimilation of remotely sensed
soil moisture and FAPAR for improving terrestrial carbon fluxes at multiple sites using CCDAS. Remote Sens.
2019, 11, 27. [CrossRef]

13. Liu, J.; Pattey, E.; Jégo, G. Assessment of vegetation indices for regional crop green LAI estimation from
Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [CrossRef]

14. Parton, W.J.; Haxeltine, A.; Thornton, P.; Anne, R.; Hartman, M. Ecosystem sensitivity to land-surface models
and leaf area index. Glob. Planet. Chang. 1996, 13, 89–98. [CrossRef]

15. Maas, S.J. GRAMI: A crop growth model that can use remotely sensed information. ARS-US Dep. Agric.
Agric. Res. Serv. (USA) 1992.

http://dx.doi.org/10.1016/S2095-3119(15)61302-8
http://dx.doi.org/10.1016/j.envsoft.2014.08.005
http://dx.doi.org/10.3724/SP.J.1011.2012.00795
http://dx.doi.org/10.1016/j.agrformet.2019.06.008
http://dx.doi.org/10.1016/j.compag.2016.03.015
http://dx.doi.org/10.1016/j.fcr.2012.09.015
http://dx.doi.org/10.1016/j.agsy.2016.10.007
http://dx.doi.org/10.1016/j.fcr.2016.12.015
http://dx.doi.org/10.1016/j.fcr.2013.11.010
http://dx.doi.org/10.1016/j.jag.2006.05.003
http://dx.doi.org/10.3390/rs11010027
http://dx.doi.org/10.1016/j.rse.2012.04.002
http://dx.doi.org/10.1016/0921-8181(95)00040-2


Remote Sens. 2019, 11, 1684 17 of 19

16. Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter
wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J.
Appl. Earth Obs. Geoinf. 2016, 49, 63–74. [CrossRef]

17. Casa, R.; Varella, H.; Buis, S.; Guérif, M.; De Solan, B.; Baret, F. Forcing a wheat crop model with LAI data to
access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with
an empirical approach. Eur. J. Agron. 2012, 37, 1–10. [CrossRef]

18. Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W.
Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat tm and MODIS
data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [CrossRef]

19. Jégo, G.; Pattey, E.; Liu, J. Using leaf area index, retrieved from optical imagery, in the STICS crop model for
predicting yield and biomass of field crops. Field Crop. Res. 2012, 131, 63–74. [CrossRef]

20. Huang, J.; Ma, H.; Su, W.; Zhang, X.; Huang, Y.; Fan, J.; Wu, W. Jointly assimilating MODIS LAI and ET
products into the swap model for winter wheat yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2015, 8, 4060–4071. [CrossRef]

21. Huang, J.; Ma, H.; Tian, L.; Wang, P.; Liu, J. Comparison of remote sensing yield estimation methods for
winter wheat based on assimilating time-sequence LAI and ET. Trans. Chin. Soc. Agric. Eng. 2015, 31,
197–203.

22. Duchemin, B.; Hadria, R.; Rodriguez, J.C.; Lahrouni, A.; Khabba, S.; Boulet, G.; Mougenot, B.;
Maisongrande, P.; Watts, C. Spatialisation of a crop model using phenology derived from remote sensing
data. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium (IEEE Cat.
No.03CH37477), Toulouse, France, 21–25 July 2003; pp. 2200–2202. [CrossRef]

23. Thorp, K.R.; Hunsaker, D.J.; French, A.N. Assimilating leaf area index estimates from remote sensing into
the simulations of a cropping systems model. Trans. ASABE. 2010, 53, 251–262. [CrossRef]

24. Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the utility of remotely sensed
soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2010, 3, 57–66. [CrossRef]

25. Duchemin, B.; Maisongrande, P.; Boulet, G.; Benhadj, I. A simple algorithm for yield estimates: Evaluation
for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 2008, 23,
876–892. [CrossRef]

26. Monteith, J. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [CrossRef]
27. Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical

remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J.
Photogramm. Remote Sens. 2015, 108, 273–290. [CrossRef]

28. Zhang, C.; Liu, J.; Shang, J.; Cai, H. Capability of crop water content for revealing variability of winter wheat
grain yield and soil moisture under limited irrigation. Sci. Total Environ. 2018, 631, 677–687. [CrossRef]

29. Duchemin, B.; Fieuzal, R.; Rivera, M.; Ezzahar, J.; Jarlan, L.; Rodriguez, J.; Hagolle, O.; Watts, C. Impact of
sowing date on yield and water use efficiency of wheat analyzed through spatial modeling and Formosat-2
images. Remote Sens. 2015, 7, 5951–5979. [CrossRef]

30. Battude, M.; Al Bitar, A.; Brut, A.; Tallec, T.; Huc, M.; Cros, J.; Weber, J.J.; Lhuissier, L.; Simonneaux, V.;
Demarez, V. Modeling water needs and total irrigation depths of maize crop in the south west of France using
high spatial and temporal resolution satellite imagery. Agric. Water Manag. 2017, 189, 123–136. [CrossRef]

31. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water
Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109.

32. Monsi, M.; Saeki, T. Uber den lichtfaktor in den pflanzengesellschaften und seine bedeutung fur die
stoffproduktion. Jpn. J. Bot. 1953, 14, 22–52.

33. Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.;
et al. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [CrossRef]

34. Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. Aquacrop—The FAO crop model to simulate yield response to
water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [CrossRef]

35. Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aquacrop—The FAO crop model to simulate yield response to
water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [CrossRef]

36. Nielsen, D.C.; Miceli-Garcia, J.J.; Lyon, D.J. Canopy cover and leaf area index relationships for wheat, triticale,
and corn. Agron. J. 2012, 104, 1569–1573. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2016.02.001
http://dx.doi.org/10.1016/j.eja.2011.09.004
http://dx.doi.org/10.1016/j.agrformet.2015.02.001
http://dx.doi.org/10.1016/j.fcr.2012.02.012
http://dx.doi.org/10.1109/JSTARS.2015.2403135
http://dx.doi.org/10.1109/IGARSS.2003.1294388
http://dx.doi.org/10.13031/2013.29490
http://dx.doi.org/10.1109/JSTARS.2009.2037163
http://dx.doi.org/10.1016/j.envsoft.2007.10.003
http://dx.doi.org/10.2307/2401901
http://dx.doi.org/10.1016/j.isprsjprs.2015.05.005
http://dx.doi.org/10.1016/j.scitotenv.2018.03.004
http://dx.doi.org/10.3390/rs70505951
http://dx.doi.org/10.1016/j.agwat.2017.04.018
http://dx.doi.org/10.1016/S1161-0301(02)00110-7
http://dx.doi.org/10.2134/agronj2008.0139s
http://dx.doi.org/10.2134/agronj2008.0140s
http://dx.doi.org/10.2134/agronj2012.0107n


Remote Sens. 2019, 11, 1684 18 of 19

37. Duchemin, B.; Hadria, R.; Erraki, S.; Boulet, G.; Maisongrande, P.; Chehbouni, A.; Escadafal, R.; Ezzahar, J.;
Hoedjes, J.C.B.; Kharrou, M.H.; et al. Monitoring wheat phenology and irrigation in central morocco: On the
use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed
vegetation indices. Agric. Water Manag. 2006, 79, 1–27. [CrossRef]

38. Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.F.; Huc, M.;
Keravec, P.; Béziat, P.; et al. Maize and sunflower biomass estimation in southwest France using high spatial
and temporal resolution remote sensing data. Remote Sens. Environ. 2012, 124, 844–857. [CrossRef]

39. Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron.
1999, 10, 23–36. [CrossRef]

40. Andarzian, B.; Bannayan, M.; Steduto, P.; Mazraeh, H.; Barati, M.E.; Barati, M.A.; Rahnama, A. Validation and
testing of the Aquacrop model under full and deficit irrigated wheat production in Iran. Agric. Water Manag.
2011, 100, 1–8. [CrossRef]

41. Toumi, J.; Er-Raki, S.; Ezzahar, J.; Khabba, S.; Jarlan, L.; Chehbouni, A. Performance assessment of Aquacrop
model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al
Haouz (morocco): Application to irrigation management. Agric. Water Manag. 2016, 163, 219–235. [CrossRef]

42. Pedersen, A.; Zhang, K.; Thorup-Kristensen, K.; Jensen, L.S. Modelling diverse root density dynamics and
deep nitrogen uptake—A simple approach. Plant. Soil 2010, 326, 493–510. [CrossRef]

43. Gallagher, J.; Biscoe, P. Radiation absorption, growth and yield of cereals. J. Agric. Sci. 1978, 91, 47–60.
[CrossRef]

44. Calderini, D.F.; Dreccer, M.F.; Slafer, G.A. Consequences of breeding on biomass, radiation interception and
radiation-use efficiency in wheat. Field Crop. Res. 1997, 52, 271–281. [CrossRef]

45. Latiri-Souki, K.; Nortcliff, S.; Lawlor, D. Nitrogen fertilizer can increase dry matter, grain production and
radiation and water use efficiencies for durum wheat under semi-arid conditions. Eur. J. Agron. 1998, 9,
21–34. [CrossRef]

46. Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global
minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [CrossRef]

47. Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional
estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled
WOFOST–PROSAIL model. Eur. J. Agron. 2019, 102, 1–13. [CrossRef]

48. Ma, G.; Huang, J.; Wu, W.; Fan, J.; Zou, J.; Wu, S. Assimilation of MODIS-LAI into the WOFOST model for
forecasting regional winter wheat yield. Math. Comput. Model. 2013, 58, 634–643. [CrossRef]

49. Silvestro, P.C.; Pignatti, S.; Yang, H.; Yang, G.; Pascucci, S.; Castaldi, F.; Casa, R. Sensitivity analysis of the
Aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale
applications. PLoS ONE 2017, 12, E0187485. [CrossRef]

50. Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting
monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [CrossRef]

51. Kang, S.; Zhang, L.; Liang, Y.; Hu, X.; Cai, H.; Gu, B. Effects of limited irrigation on yield and water use
efficiency of winter wheat in the loess plateau of china. Agric. Water Manag. 2002, 55, 203–216. [CrossRef]

52. Ji, X.; Yu, Y.; Zhang, W.; Yu, W. Spatial-temporal patterns of winter wheat harvest index in china in recent
twenty years. Sci Agric. Sin. 2010, 43, 3511–3519.

53. Soltani, A.; Sinclair, T.R. A comparison of four wheat models with respect to robustness and transparency:
Simulation in a temperate, sub-humid environment. Field Crop. Res. 2015, 175, 37–46. [CrossRef]

54. Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.;
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