The Effect of Assimilating AMSU-A Radiance Data from Satellites and Large-Scale Flows from GFS on Improving Tropical Cyclone Track Forecast
Abstract
:1. Introduction
2. Methodology
2.1. The WRF-ARW Model
2.2. The Data Assimilation System with SSDA Incorporated
2.3. Radiative Transfer Model—CRTM
2.4. AMSU-A Radiance Data and Its Processing
3. Experiment Design
4. Results and Discussion
4.1. Forecasted Tracks from Different Experiments
4.2. Analysis and Discussion
5. Summaries
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goerss, J.S.; Sampson, C.R.; Gross, J.M. A History of Western North Pacific Tropical Cyclone Track Forecast Skill. Weather Forecast. 2004, 19, 633–638. [Google Scholar] [CrossRef]
- Cangialosi, J.P.; Franklin, J.L. 2010 National Hurricane Center Forecast Verfication Report; NOAA: Silver Spring, MD, USA, 2011; p. 77.
- Yu, H.; Chan, S.T.; Brown, B.; Kunitsugu, M.; Fukada, E.; Park, S.; Lee, W.; Xu, Y.; Phalla, P.; Sysouphanthavong, B.; et al. Operational tropical cyclone forecast verification practice in the western North Pacific region. Trop. Cyclone Res. Rev. 2012, 1, 361–372. [Google Scholar]
- Qian, C.; Duan, Y.; Ma, S.; Xu, Y. The Current Status and Future Development of China Operational Typhoon Forecasting and Its Key Technologies. Adv. Meteorol. Sci. Technol. 2012, 2, 6–43. [Google Scholar]
- Gao, X. The accuracy of typhoon track forecasts in China hits a new record. Emerg. Manag. China 2015, 11, 74. [Google Scholar]
- Lei, X.; Chen, G.; Zhang, X.; Chen, P.; Yu, H.; Wan, R. Performance of Tropical Cyclone Forecast in Western North Pacific in 2016. In Proceedings of the Forty-ninth Session of ESCAP/WMO Typhoon Committee, Yokohama, Japan, 21–24 February 2017. [Google Scholar]
- Bjerknes, V. Dynamic meteorology and hydrographs, Part II. In Kinematics; Camegie Institute: New York, NY, USA, 1911. [Google Scholar]
- Zhang, S.; Wang, S. Numerical experiments of the prediction of typhoon tracks by using satellite cloud-derived wind. J. Trop. Meteor. 1999, 15, 347–355. [Google Scholar]
- Zhou, X.; Zhu, Y. Numerical study on the effect of asymmetric diabatic heating on tropical cyclone motion. Q. J. Appl. Meteorol. 1999, 10, 284–292. [Google Scholar]
- Kidder, S.Q.; Goldberg, M.D.; Zehr, R.M.; Demaria, M.; Purdom, J.F.W.; Velden, C.S.; Grody, N.C.; Kusselson, S.J. Satellite Analysis of Tropical Cyclones Using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc. 2000, 81, 1241–1259. [Google Scholar] [CrossRef]
- Zhang, H. Chapter 5, the Application of the ATOVS Radiance Microwave Data (I)—The Satellite Observation of the Typhoon Structure in Northwest Pacific, the Direct Assimilation Method and Application Research of the ATOVS Radiance Data. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2003; pp. 62–86. [Google Scholar]
- Cui, L.; Sun, J.; Qi, L.; Lei, T. Application of ATOVS Radiance-Bias Correction to Typhoon Track Prediction with Ensemble Kalman Filter Data Assimilation. Adv. Atmos. Sci. 2011, 28, 178–186. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F. Radiance assimilation in studying Hurricane Katrina. Geophys. Res. Lett. 2006, 33, L22811. [Google Scholar] [CrossRef]
- Sandeep, S.; Chandrasekar, A.; Singh, D. The impact of assimilation of AMSU data for the prediction of a tropical cyclone over India using amesoscale model. Int. J. Remote Sens. 2006, 27, 4621–4653. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, J.; Zhu, G.; Zhuang, S.; Wu, X.; Zhang, F. Application of Direct Assimilation of ATOVS Microwave Radiances to Typhoon Track Prediction. Adv. Atmos. Sci. 2004, 21, 283–290. [Google Scholar] [CrossRef]
- Zhang, M.; Zupanski, M.; Kim, M.-J. Assimilating AMSU-A Radiances in the TC Core Area with NOAA Operational HWRF (2011) and a Hybrid Data Assimilation System: Danielle (2010). Mon. Weather Rev. 2013, 141, 3889–3907. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Xie, L.; Liu, B.; Semazzi, F. Application of Scale-Selective Data Assimilation to Regional Climate Modeling and Prediction. Mon. Weather Rev. 2010, 138, 1307–1318. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Hao, S.; Peng, S.; Liu, B.; Gu, X.; Qian, Y.-K. On Improving Tropical Cyclone Track Forecasts Using a Scale-Selective Data Assimilation Approach: A Case Study. Nat. Hazards 2014, 73, 1353–1368. [Google Scholar] [CrossRef]
- Liu, B.; Xie, L. A Scale-Selective Data Assimilation Approach to Improving Tropical Cyclone Track and Intensity Forecasts in a Limited-Area Model: A Case Study of Hurricane Felix (2007). Weather. Forecast. 2012, 27, 124–140. [Google Scholar] [CrossRef]
- Xie, L.; Liu, B.; Peng, S. Application of scale-selective data assimilation to tropical cyclone track simulation. J. Geophys. Res. 2010, 115, D17105. [Google Scholar] [CrossRef] [Green Version]
- Chou, J. Some properties of operators and the effect of Initial condition. Acta. Meteorol. Sin. 1983, 41, 385–392. [Google Scholar]
- Ding, W.; Wan, Q.; Yan, J.; Huang, Y.; Chen, Z. Impact of The Initialization on Mesoscale Model Predition in South China. J. Trop. Meteor. 2006, 22, 10–17. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. In NCAR Tech Note; Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Wang, W.; Bruyere, C.; Duda, M.; Dudhia, J.; Gill, D.; Kavulich, M.; Keene, K.; Lin, H.-C.; Michalakes, J.; Rizvi, S.; et al. Advanced Research WRF (ARW) Version 3 Modeling system user’s guide. In ARW Tech Note; Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2014. [Google Scholar]
- Han, Y.; Delst, P.V.; Liu, Q.; Weng, F.; Yan, B.; Derber, J. User’s Guider to the JCSDA Community Radiative Transfer Model (Beta Version); Joint Center for Satellite Data Assimilation: Camp Springs, MD, USA, 2005. [Google Scholar]
- Han, Y.; Delst, P.V.; Liu, Q.; Weng, F.; Yan, B.; Treadon, R.; Derber, J. JCSDA Community Radiative Transfer Model (CRTM), Version 1. In NOAA Technical Report; NESDIS: Silver Spring, MD, USA, 2006; Volume 122, p. 33. [Google Scholar]
- Kleespies, T.J.; Delst, P.V.; McMillin, L.M.; Derber, J. Atmospheric transmittance of an absorbing gas. 6. An OPTRAN status report and introduction to the NESDIS/NCEP Community Radiative Transfer Model. Appl. Opt. 2004, 43, 3103–3109. [Google Scholar] [CrossRef]
- McMillin, L.M.; Core, L.J.; Kleespies, T.J. Atmospheric transmittance of an absorbing gas. 5: Improvements to the OPTRAN approach. Appl. Opt. 1995, 34, 8396–8399. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F. Advanced Doubling-Adding Method for Radiative Transfer in Planetary Atmospheres. J. Atmos. Sci. 2006, 63, 3459–3465. [Google Scholar] [CrossRef]
- Derber, J.C.; Wu, W.S. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Weather Rev. 1998, 126, 2287–2299. [Google Scholar] [CrossRef]
- Eyre, J.R. A bias correction scheme for simulated TOVS brightness temperatures. Tech. Memo. 1992, 176, 81–109. [Google Scholar]
- Harris, B.A.; Kelly, G. A satellite radiance bias correction scheme for data assimilation. Quart. J. R. Meteor. Soc. 2001, 127, 1453–1468. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Weng, F.; Grody, N.C.; Zhao, L. Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett. 2000, 27, 2669–2672. [Google Scholar] [CrossRef]
- Grody, N.C.; Zhao, L.; Ferraro, R.R.; Weng, F.; Boers, R. Determination of precipitable water and cloud liquid water over oceans from the NOAA-15 advanced microwave sounding unit. J. Geophys Res. 2001, 106, 2943–2953. [Google Scholar] [CrossRef]
- Qian, C.; Zhang, F.; Green, B.W. Probabilistic Evaluation of the Dynamics and Prediction of Supertyphoon Megi (2010). Weather Forecast. 2013, 28, 1562–1577. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrère, P. Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Ferrier, B.S.; Jin, Y.; Lin, Y.; Black, T.; Rogers, E.; DiMego, G. Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model; Preprints. In Proceedings of the 19th Conference on Weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction, San Antonio, TX, USA, 12–16 August 2002; American Meteorological Society: Boston, MA, USA; pp. 280–283. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Neumann, C.J.; Pelissier, J.M. An analysis of Atlantic tropical cyclone forecast errors, 1970-1979. Mon. Weather Rev. 1981, 109, 1248–1266. [Google Scholar] [CrossRef]
- Powell, M.D.; Aberson, S.D. Accuracy of United States Tropical Cyclone Landfall Forecasts in the Atlantic Basin (1976-2000). Bull. Am. Meteor. Soc. 2001, 82, 2749–2767. [Google Scholar] [CrossRef]
- Chen, L.; Xu, X.; Xie, Y.; Li, W. The Effect of Tropical Cyclone Asymmetric Thermodynamic Structure on Its Unusual Motion. Sci. Atmos. Sin. 1997, 21, 83–90. [Google Scholar]
- Chan, J.C.L.; Gray, W.M. Tropical cyclone movement and surrounding flow relationships. Mon. Weather Rev. 1982, 110, 1354–1374. [Google Scholar] [CrossRef]
- Deng, G.; Zhou, Y.-S.; Liu, L.-P. Use of a new steering flow method to predict tropical cyclone motion. J. Trop. Meteor. 2010, 16, 154–159. [Google Scholar]
- Dong, K.; Neumann, C.J. On the relative motion of binary tropical cyclones. Mon. Weather Rev. 1983, 111, 945–953. [Google Scholar] [CrossRef]
- Franklin, J. Dropwindsonde observations of the environmental flow of Hurricane Josephine (1984)—Relationships to vortex motion. Mon. Weather Rev. 1990, 118, 2732–2744. [Google Scholar] [CrossRef]
- Wang, B.; Elsberry, R.L.; Wang, Y.; Wu, L. Dynamics in Tropical Cyclone Motion: A Review. Chin. J. Atmos. Sci. 1998, 22, 416–434. [Google Scholar]
Channel | Frequency (GHz) | Peak Level | Main Observation | |
---|---|---|---|---|
AMSU-A | 1 | 23.8 | Surface | Surface condition and the precipitable water |
2 | 31.4 | Surface | As above | |
3 | 50.3 | Surface | Surface emissivity | |
4 | 52.8 | 1000 hPa | Atmospheric temperature | |
5 | 53.59 ± 0.115 | 700 hPa | Atmospheric temperature | |
6 | 54.4 | 400 hPa | Atmospheric temperature | |
7 | 59.94 | 270 hPa | Atmospheric temperature | |
8 | 55.5 | 180 hPa | Atmospheric temperature | |
9 | FLO = 57.29 | 90 hPa | Atmospheric temperature | |
10 | FLO ± 0.217 | 50 hPa | Atmospheric temperature | |
11 | FLO ± 0.322 ± 0.048 | 25 hPa | Atmospheric temperature | |
12 | FLO ± 0.322 ± 0.022 | 12 hPa | Atmospheric temperature | |
13 | FLO ± 0.322 ± 0.010 | 5 hPa | Atmospheric temperature | |
14 | FLO ± 0.322 ± 0.0045 | 2 hPa | Atmospheric temperature | |
15 | 89 | Surface | Surface condition and the precipitable water |
Exp. No. | Exp. Name | Data Assimilated | Assimilation Method Used |
---|---|---|---|
1 | CTL | No | No |
2 | RAD-DA | AMSU-A Radiance Data | 3 DVAR technique |
3 | GFS-DA | large-scale GFS flows | Scale-Selective Data Assimilation |
4 | COM-DA | AMSU-A Radiance Data and large-scale GFS flows | 3DVAR technique and Scale-Selective Data Assimilation |
Exp. Name | Megi | Nesat |
---|---|---|
CTL | 8 runs of 5-day forecast initialized every 6 hours from 0000 UTC 17 Sep 2010 to 1800 UTC 18 Sep 2010 | 8 runs of 5-day forecast initialized every 6 hours from 0000 UTC 24 Sep 2011to 1800 UTC 25 Sep 2011 |
RAD-DA | ||
GFS-DA | ||
COM-DA |
Forecast Period (h) and (No. of Cases) | TPEs of Megi (2010) | TPEs of Nesat (2011) | ||||||
---|---|---|---|---|---|---|---|---|
CTL | GFS-DA | RAD-DA | COM_DA | CTL | GFS-DA | RAD-DA | COM_DA | |
12(8) | 73.4 | 73.4 | 58.4 | 58.4 | 114.8 | 111.8 | 89.3 | 89.3 |
24(8) | 67.9 | 69.6 | 74.1 | 74.1 | 134.2 | 149.1 | 93.1 | 93.1 |
36(8) | 82.7 | 76.3 | 74.3 | 74.3 | 215.7 | 184.7 | 142.5 | 142.5 |
48(8) | 127.5 | 115.6 | 98.9 | 98.9 | 285.6 | 215.5 | 188.4 | 188.4 |
60(8) | 150.0 | 130.6 | 127.2 | 122.5 | 353.0 | 251.8 | 248.7 | 229.8 |
72(8) | 147.4 | 152.9 | 187.1 | 126.1 | 434.6 | 259.3 | 311.0 | 269.4 |
84(8) | 197.6 | 166.7 | 292.8 | 142.3 | 526.2 | 307.0 | 390.2 | 327.8 |
96(8) | 296.5 | 163.1 | 426.7 | 138.0 | 617.5 | 348.1 | 472.6 | 375.4 |
108(8) | 378.9 | 151.0 | 535.6 | 166.1 | 748.8 | 430.4 | 595.6 | 453.5 |
120(8) | 449.9 | 174.5 | 652.8 | 203.5 | 923.2 | 480.7 | 770.4 | 513.5 |
Mean errors | 197.2 | 127.3 | 252.8 | 120.4 | 435.4 | 273.8 | 330.2 | 268.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Z.; Peng, S. The Effect of Assimilating AMSU-A Radiance Data from Satellites and Large-Scale Flows from GFS on Improving Tropical Cyclone Track Forecast. Atmosphere 2022, 13, 1988. https://doi.org/10.3390/atmos13121988
Lai Z, Peng S. The Effect of Assimilating AMSU-A Radiance Data from Satellites and Large-Scale Flows from GFS on Improving Tropical Cyclone Track Forecast. Atmosphere. 2022; 13(12):1988. https://doi.org/10.3390/atmos13121988
Chicago/Turabian StyleLai, Zhijuan, and Shiqiu Peng. 2022. "The Effect of Assimilating AMSU-A Radiance Data from Satellites and Large-Scale Flows from GFS on Improving Tropical Cyclone Track Forecast" Atmosphere 13, no. 12: 1988. https://doi.org/10.3390/atmos13121988
APA StyleLai, Z., & Peng, S. (2022). The Effect of Assimilating AMSU-A Radiance Data from Satellites and Large-Scale Flows from GFS on Improving Tropical Cyclone Track Forecast. Atmosphere, 13(12), 1988. https://doi.org/10.3390/atmos13121988