Rainfall Simulations of High-Impact Weather in South Africa with the Conformal Cubic Atmospheric Model (CCAM)
Abstract
:1. Introduction
2. Model, Data and Simulations
2.1. Model Description
2.2. Model Set up
- CCAM running with a grid length of 9 km over most of southern Africa shown in Figure 1a, nudged within the GFS data. This configuration is referred to as MN9km in this study.
- CCAM running with a grid length of 3 km over South Africa shown in Figure 1b. The simulations are nudged within the 9 km CCAM simulations above and referred to as MN3km.
- CCAM running with a grid length of 3 km on the same domain as MN3km shown in Figure 1b; however, it is nudged directly within the GFS data. This configuration is referred to as SN3km.
2.3. Observation Data
2.4. Verification
3. Case Study Descriptions
3.1. Tropical System
3.2. Coupled Tropical and Midlatitude Systems
3.3. Coupled Subtropical and Mid Latitude Systems
3.4. Midlatitude Systems
4. Results
4.1. Total Rainfall
4.2. Rainfall Distribution
4.3. Verification Results
4.4. Subgrid vs. Resolved Rainfall
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reason, C.J.C.; Keibel, A. Tropical Cyclone Eline and Its Unusual Penetration and Impacts over the Southern African Mainland. Weather. Forecast. 2004, 19, 789–805. [Google Scholar] [CrossRef]
- Mavume, A.; Rydberg, L.; Rouault, M.; Lutjeharms, J. Climatology and Landfall of Tropical Cyclones in the South- West Indian Ocean. West. Indian Ocean J. Mar. Sci. 2010, 8, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Malherbe, J.; Engelbrecht, F.; Landman, W. Projected changes in tropical cyclone climatology and landfall in the Southwest Indian Ocean region under enhanced anthropogenic forcing. Clim. Dyn. 2013, 40, 2867–2886. [Google Scholar] [CrossRef] [Green Version]
- Chikoore, H.; Vermeulen, J.; Jury, M. Tropical cyclones in the Mozambique Channel: January–March 2012. Nat. Hazards 2015, 77, 2081–2095. [Google Scholar] [CrossRef]
- Davis-Reddy, C.; Vincent, K. Climate Risk and Vulnerability: A Handbook for Southern Africa, 2nd ed.; CSIR: Pretoria, South Africa, 2017; p. 193. [Google Scholar]
- Sun, X.; Cook, K.H.; Vizy, E.K. The South Atlantic subtropical high: Climatology and interannual variability. J. Clim. 2017, 30, 3279–3296. [Google Scholar] [CrossRef]
- Xulu, N.G.; Chikoore, H.; Bopape, M.J.M.; Nethengwe, N.S. Climatology of the mascarene high and its influence on weather and climate over Southern Africa. Climate 2020, 8, 86. [Google Scholar] [CrossRef]
- Ndarana, T.; Mpati, S.; Bopape, M.J.; Engelbrecht, F.; Chikoore, H. The flow and moisture fluxes associated with ridging South Atlantic Ocean anticyclones during the subtropical southern African summer. Int. J. Climatol. 2021, 41, E1000–E1017. [Google Scholar] [CrossRef]
- Singleton, A.; Reason, C. Variability in the characteristics of cut-off low pressure systems over subtropical southern Africa. Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 295–310. [Google Scholar] [CrossRef]
- Favre, A.; Hewitson, B.; Lennard, C.; Cerezo-Mota, R.; Tadross, M. Cut-off lows in the South Africa region and their contribution to precipitation. Clim. Dyn. 2013, 41, 2331–2351. [Google Scholar] [CrossRef]
- Engelbrecht, C.J.; Landman, W.A.; Engelbrecht, F.A.; Malherbe, J. A synoptic decomposition of rainfall over the Cape south coast of South Africa. Clim. Dyn. 2015, 44, 2589–2607. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G.; Chikodzi, D. Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa. GeoJournal 2021, 87, 453–468. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization. State of the Climate in Africa 2019; WMO: Geneva, Switzerland, 2020; p. 33. [Google Scholar]
- World Meteorological Organization. State of the Climate in Africa 2020; WMO: Geneva, Switzerland, 2021; p. 39. [Google Scholar]
- World Meteorological Organization. State of the Climate in Africa 2021; WMO: Geneva, Switzerland, 2022; p. 48. [Google Scholar]
- UN News. UN Weather Agency to Spearhead 5 year Early Warning Plan, Boosting Climate Action; United Nation: San Francisco, CA, USA, 2022. [Google Scholar]
- Shilenje, Z.W.; Ogwang, B.A. The role of Kenya meteorological service in weather early warning in Kenya. Int. J. Atmos. Sci. 2015, 2015, 302076. [Google Scholar] [CrossRef] [Green Version]
- Landman, S.; Engelbrecht, F.A.; Engelbrecht, C.J. A short-range weather prediction system for South Africa based on a multi-model approach. Water SA 2012, 38, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Bopape, M.J.M.; Sebego, E.; Ndarana, T.; Maseko, B.; Netshilema, M.; Gijben, M.; Landman, S.; Phaduli, E.; Rambuwani, G.; Van Hemert, L.; et al. Evaluating South African weather service information on idai tropical cyclone and KwaZulu-natal flood events. S. Afr. J. Sci. 2021, 117, 1–13. [Google Scholar] [CrossRef]
- Dyson, L.; Van Heerden, J. The heavy rainfall and floods over the northeastern interior of South Africa during February 2000. S. Afr. J. Sci. 2001, 97, 80–86. [Google Scholar]
- Riphagen, H.; Bruyère, C.; Jordaan, W.; Poolman, E.; Gertenbach, J. Experiments with the NCEP regional Eta Model at the South African Weather Bureau, with emphasis on terrain representation and its effect on precipitation predictions. Mon. Weather Rev. 2002, 130, 1246–1263. [Google Scholar] [CrossRef]
- Bopape, M.J.M.; Sithole, H.M.; Motshegwa, T.; Rakate, E.; Engelbrecht, F.; Archer, E.; Morgan, A.; Ndimeni, L.; Botai, J. A regional project in support of the SADC cyber-infrastructure framework implementation: Weather and climate. Data Sci. J. 2019, 18, 34. [Google Scholar] [CrossRef] [Green Version]
- Meque, A.; Gamedze, S.; Moitlhobogi, T.; Booneeady, P.; Samuel, S.; Mpalang, L. Numerical weather prediction and climate modelling: Challenges and opportunities for improving climate services delivery in Southern Africa. Clim. Serv. 2021, 23, 100243. [Google Scholar] [CrossRef]
- Mulovhedzi, P.T.; Rambuwani, G.T.; Bopape, M.J.; Maisha, R.; Monama, N. Model inter-comparison for short-range forecasts over the southern African domain. S. Afr. J. Sci. 2021, 117, 1–12. [Google Scholar] [CrossRef]
- Melvin, T.; Mullerworth, S.; Ford, R.; Maynard, C.; Hobson, M. LFRic: Building a new Unified Model. Egu Gen. Assem. Conf. Abstr. 2017, 19, 13021. [Google Scholar]
- De Lucia, C.; Bucchignani, E.; Mastellone, A.; Adinolfi, M.; Montesarchio, M.; Cinquegrana, D.; Mercogliano, P.; Schiano, P. A Sensitivity Study on High Resolution NWP ICON—LAM Model over Italy. Atmosphere 2022, 13, 540. [Google Scholar] [CrossRef]
- Mcgregor, J.L.; Dix, M.R. The CSIRO conformal-cubic atmospheric GCM. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics; Springer: Dordrecht, The Netherlands, 2001; pp. 197–202. [Google Scholar]
- Engelbrecht, F.; McGregor, J.; Engelbrecht, C. Dynamics of the Conformal-Cubic Atmospheric Model projected climate-change signal over southern Africa. Int. J. Climatol. A J. R. Meteorol. Soc. 2009, 29, 1013–1033. [Google Scholar] [CrossRef]
- Garland, R.M.; Matooane, M.; Engelbrecht, F.A.; Bopape, M.J.M.; Landman, W.A.; Naidoo, M.; Van der Merwe, J.; Wright, C.Y. Regional projections of extreme apparent temperature days in Africa and the related potential risk to human health. Int. J. Environ. Res. Public Health 2015, 12, 12577–12604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thatcher, M.; McGregor, J.L. Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon. Weather Rev. 2009, 137, 1742–1752. [Google Scholar] [CrossRef]
- Engelbrecht, F.; Landman, W.A.; Engelbrecht, C.; Landman, S.; Bopape, M.; Roux, B.; McGregor, J.; Thatcher, M. Multi-scale climate modelling over Southern Africa using a variable-resolution global model. Water SA 2011, 37, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Huang, J.; Thatcher, M. Assessing the value of simulated regional weather variability in solar forecasting using numerical weather prediction. Sol. Energy 2017, 144, 529–539. [Google Scholar] [CrossRef]
- McGregor, J.L.; Dix, M.R. An updated description of the conformal-cubic atmospheric model. In High Resolution Numerical Modelling of the Atmosphere and Ocean; Springer Science & Business Media: New York, NY, USA, 2008; pp. 51–75. [Google Scholar]
- Rotstayn, L.D. A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Q. J. R. Meteorol. Soc. 1997, 123, 1227–1282. [Google Scholar]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Freidenreich, S.; Ramaswamy, V. A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res. Atmos. 1999, 104, 31389–31409. [Google Scholar] [CrossRef] [Green Version]
- Schwarzkopf, M.D.; Ramaswamy, V. Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment. J. Geophys. Res. Atmos. 1999, 104, 9467–9488. [Google Scholar] [CrossRef] [Green Version]
- Hurley, P. Modelling mean and turbulence fields in the dry convective boundary layer with the eddy-diffusivity/mass-flux approach. Bound.-Layer Meteorol. 2007, 125, 525–536. [Google Scholar] [CrossRef]
- Weisman, M.; Skamarock, W.; Klemp, J. The Resolution Dependence of Explicitly Modeled Convective Systems. Mon. Weather Rev. 1997, 125, 527–548. [Google Scholar] [CrossRef]
- Roberts, N. Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteorol. Appl. 2008, 15, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Bryan, G.; Wyngaard, J.; Fritsch, J. Resolution Requirements for the Simulation of Deep Moist Convection. Mon. Weather Rev. 2003, 131, 2394. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Clim. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Zheng, Y.; Alpaty, K.; Herwehe, J.A.; Del Genio, A.D.; Niyogi, D. Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) model with an updated Kain-Fritsch scheme. Mon. Weather Rev. 2016, 144, 833–860. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- McGregor, J. A new convection scheme using a simple closure. In Current Issues in the Parameterization of Convection: Extended Abstracts of Presentations at the Fifteenth Annual BMRC Modelling Workshop; Meighen, P.J., Hollis, A.J., Eds.; Bureau of Meteorology Research Centre: Melbourne, VIC, Australia, 2003; pp. 33–36. [Google Scholar]
- Sela, J.G. Implementation of the sigma pressure hybrid coordinate into GFS. NCEP Off. Note 2009, 461, 1–25. [Google Scholar]
- Steeneveld, G.J.; Peerlings, E. Mesoscale Model Simulation of a Severe Summer Thunderstorm in The Netherlands: Performance and Uncertainty Assessment for Parameterised and Resolved Convection. Atmosphere 2020, 11, 811. [Google Scholar] [CrossRef]
- Champion, A.; Hodges, K. Importance of resolution and model configuration when downscaling extreme precipitation. Tellus A 2014, 66, 23993. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Dee, D. ERA5 Reanalysis is in Production; ECMWF: Reading, UK, 2016. [Google Scholar]
- Beusch, L.; Foresti, L.; Gabella, M.; Hamann, U. Satellite-Based Rainfall Retrieval: From Generalized Linear Models to Artificial Neural Networks. Remote Sens. 2018, 10, 939. [Google Scholar] [CrossRef] [Green Version]
- Moses, O.; Ramotonto, S. Assessing forecasting models on prediction of the tropical cyclone Dineo and the associated rainfall over Botswana. Weather Clim. Extrem. 2018, 21, 102–109. [Google Scholar] [CrossRef]
- Mhlanga, C.; Muzingili, T.; Mpambela, M. Natural disasters in Zimbabwe: The primer for social work intervention. Afr. J. Soc. Work 2019, 9, 46–54. [Google Scholar]
- South African Weather Service. Synoptic Weather Map for 16 February 2017. Available online: https://www.weathersa.co.za/Documents/Publications/20170216.pdf (accessed on 1 June 2022).
- Meyiwa, S. Numerical Modelling of Tropical Cyclone Dineo and Its Rainfall Impacts over North-Eastern South Africa. Master’s Thesis, Faculty of Science, University of Cape Town, Cape Town, South Africa, 2019. [Google Scholar]
- South African Weather Service. Synoptic Weather Map for 12 November 2019. Available online: https://www.weathersa.co.za/Documents/Publications/20191112.pdf (accessed on 1 June 2022).
- Mahomed, M. Detection and Early Warning of Lightning and Extreme Storm Events in KwaZulu-Natal, South Africa. Ph.D. Thesis, School of Agricultural, Earth and Environmental Sciences, Pietermaritzburg, South Africa, 2020. [Google Scholar]
- Njilo, N. Roads Flooded as Afternoon Storms Hit Joburg. Available online: https://www.timeslive.co.za/news/south-africa/2020-10-05-roads-flooded-as-afternoon-storms-hit-joburg/ (accessed on 1 June 2022).
- South African Weather Service. Synoptic Weather Map for 5 October 2020. Available online: https://www.weathersa.co.za/Documents/Publications/20201005.pdf (accessed on 1 June 2022).
- Peixoto, J.; Oort, A.H. The climatology of relative humidity in the atmosphere. J. Clim. 1996, 9, 3443–3463. [Google Scholar] [CrossRef]
- South African Weather Service. Synoptic Weather Map for 9 October 2017. Available online: https://www.weathersa.co.za/Documents/Publications/20171009.pdf (accessed on 1 June 2022).
- South African Weather Service. Synoptic Weather Map on 22 April 2022. Available online: https://www.weathersa.co.za/Documents/Publications/20220422.pdf (accessed on 1 June 2022).
- Muofhe, T.P.; Chikoore, H.; Bopape, M.J.M.; Nethengwe, N.S.; Ndarana, T.; Rambuwani, G.T. Forecasting intense cut-off lows in South Africa using the 4.4 km Unified Model. Climate 2020, 8, 129. [Google Scholar] [CrossRef]
- South African Weather Service. Synoptic Weather Map for 7 June 2017. Available online: https://www.weathersa.co.za/Documents/Publications/20170607.pdf (accessed on 1 June 2022).
- Barnes, M.A.; Turner, K.; Ndarana, T.; Landman, W.A. Cape storm: A dynamical study of a cut-off low and its impact on South Africa. Atmos. Res. 2021, 249, 105290. [Google Scholar] [CrossRef]
- Mugume, I.; Basalirwa, C.; Waiswa, D.; Nsabagwa, M.; Ngailo, T.J.; Reuder, J.; Ulrich, S.; Semujju, M. A comparative analysis of the performance of COSMO and WRF models in quantitative rainfall prediction. Int. J. Mar. Environ. Sci. 2018, 12, 130–138. [Google Scholar]
- Lean, H.W.; Clark, P.A.; Dixon, M.; Roberts, N.M.; Fitch, A.; Forbes, R.; Halliwell, C. Characteristics of High-Resolution Versions of the Met Office Unified Model for Forecasting Convection over the United Kingdom. Mon. Weather Rev. 2008, 136, 3408–3424. [Google Scholar] [CrossRef] [Green Version]
- Stensrud, D. Parametrization schemes. Keys to understanding numerical weather prediction models, Reprint of the 2007 hardback ed.; In Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press: Cambridge, UK, 2007; p. 480. [Google Scholar] [CrossRef]
- Keat, W.J.; Stein, T.H.; Phaduli, E.; Landman, S.; Becker, E.; Bopape, M.J.M.; Hanley, K.E.; Lean, H.W.; Webster, S. Convective initiation and storm life cycles in convection-permitting simulations of the Met Office Unified Model over South Africa. Q. J. R. Meteorol. Soc. 2019, 145, 1323–1336. [Google Scholar] [CrossRef]
Observations | |||
---|---|---|---|
Yes | No | ||
Forecast | Yes | hits (H) | false alarms (F) |
No | misses (M) | correct rejects (R) |
High-Impact Event | Date | Weather System | Origin |
---|---|---|---|
Dineo Floods | 16 February 2017 | Tropical cyclone | Tropical |
Cape Strong winds | 7 June 2017 | Cut-off low and Cold front | Midlatitude |
2017 KZN floods | 9 October 2017 | Cut-off low and ridging high | Midlatitude and subtropical |
2019 KZN floods | 22 April 2019 | Cut-off low and ridging high | Midlatitude and subtropical |
KZN Tornadoes | 12 November 2019 | Upper level trough and surface trough | Midlatitude and tropical |
Joburg floods | 05 October 2020 | Upper trough and surface trough | Midlatitude and tropical |
Total Rainfall | Stations Reporting 0.1 mm and Above | |||||||
---|---|---|---|---|---|---|---|---|
High-Impact Event | Obs | SN3km | MN3km | MN9km | Obs | SN3km | MN3km | MN9km |
Dineo Floods | 5451.40 | 4091.24 | 5147.11 | 4821.94 | 284 | 490 | 445 | 637 |
Cape Strong winds | 5016.90 | 4390.93 | 5790.66 | 4578.82 | 306 | 386 | 412 | 424 |
2017 KZN floods | 11,375.60 | 12,649.33 | 15,860.36 | 13,591.34 | 643 | 1019 | 1036 | 1051 |
2019 KZN floods | 18,879.90 | 15,716.36 | 17,740.54 | 15,179.72 | 789 | 865 | 870 | 935 |
KZN Tornadoes | 7671.10 | 7015.98 | 7555.30 | 5816.60 | 693 | 1027 | 1018 | 1026 |
Joburg floods | 3329.20 | 3335.51 | 4523.80 | 2821.14 | 268 | 366 | 398 | 373 |
ME | RMSE | |||||
---|---|---|---|---|---|---|
High-Impact Event | SN3km | MN3km | MN9km | SN3km | MN3km | MN9km |
Dineo Floods | −0.93 | −0.32 | −0.54 | 10.43 | 10.73 | 10.94 |
Cape Strong winds | −0.42 | 0.41 | −0.4 | 6.9 | 7.5 | 6.7 |
2017 KZN floods | 0.88 | 3.1 | 1.53 | 18.12 | 20.54 | 16.89 |
2019 KZN floods | −2.35 | −0.84 | −2.75 | 30.45 | 31.43 | 28.83 |
KZN Tornadoes | −0.44 | −0.38 | −0.76 | 12.51 | 12.48 | 11.61 |
Joburg floods | 4.97 | 0.93 | −0.4 | 8.84 | 10.13 | 8.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bopape, M.-J.M.; Engelbrecht, F.A.; Maisha, R.; Chikoore, H.; Ndarana, T.; Lekoloane, L.; Thatcher, M.; Mulovhedzi, P.T.; Rambuwani, G.T.; Barnes, M.A.; et al. Rainfall Simulations of High-Impact Weather in South Africa with the Conformal Cubic Atmospheric Model (CCAM). Atmosphere 2022, 13, 1987. https://doi.org/10.3390/atmos13121987
Bopape M-JM, Engelbrecht FA, Maisha R, Chikoore H, Ndarana T, Lekoloane L, Thatcher M, Mulovhedzi PT, Rambuwani GT, Barnes MA, et al. Rainfall Simulations of High-Impact Weather in South Africa with the Conformal Cubic Atmospheric Model (CCAM). Atmosphere. 2022; 13(12):1987. https://doi.org/10.3390/atmos13121987
Chicago/Turabian StyleBopape, Mary-Jane M., Francois A. Engelbrecht, Robert Maisha, Hector Chikoore, Thando Ndarana, Lesetja Lekoloane, Marcus Thatcher, Patience T. Mulovhedzi, Gift T. Rambuwani, Michael A. Barnes, and et al. 2022. "Rainfall Simulations of High-Impact Weather in South Africa with the Conformal Cubic Atmospheric Model (CCAM)" Atmosphere 13, no. 12: 1987. https://doi.org/10.3390/atmos13121987
APA StyleBopape, M. -J. M., Engelbrecht, F. A., Maisha, R., Chikoore, H., Ndarana, T., Lekoloane, L., Thatcher, M., Mulovhedzi, P. T., Rambuwani, G. T., Barnes, M. A., Mkhwanazi, M., & Mphepya, J. (2022). Rainfall Simulations of High-Impact Weather in South Africa with the Conformal Cubic Atmospheric Model (CCAM). Atmosphere, 13(12), 1987. https://doi.org/10.3390/atmos13121987