High Spatial and Temporal Resolution Methane Emissions Inventory from Terrestrial Ecosystems in China, 2010–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetation
2.2. Wetland
2.3. Paddy Fields
3. Results
3.1. Spatial Patterns of CH4 Emissions
3.2. Temporal Patterns of CH4 Emissions
3.3. Intra-Annual Spatial and Temporal Distribution of CH4 Emissions
4. Discussion
4.1. Relationship between Interannual Variation Trend of CH4 Emissions and Air Temperature
4.2. Comparison with the Results of Other Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- IPCC. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- WMO Greenhouse Gas Bulletin (GHG Bulletin). No.16: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2019; World Meteorological Organization: Geneva, Switzerland, 2020; Volume 16, p. 6. [Google Scholar]
- Shindell, D.T. Crop Yield Changes Induced by Emissions of Individual Climate-Altering Pollutants. Earth’s Future 2016, 4, 373–380. [Google Scholar] [CrossRef] [Green Version]
- West, J.J.; Smith, S.J.; Silva, R.A.; Naik, V.; Zhang, Y.; Adelman, Z.; Fry, M.M.; Anenberg, S.; Horowitz, L.W.; Lamarque, J.-F. Co-Benefits of Mitigating Global Greenhouse Gas Emissions for Future Air Quality and Human Health. Nat. Clim. Chang. 2013, 3, 885–889. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, X.; Chuai, X.; Huang, X.; Wang, Z. Long-Term Trends of Atmospheric CH4 Concentration across China from 2002 to 2016. Remote Sens. 2019, 11, 538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xiao, X.; Dong, J.; Xin, F.; Zhang, Y.; Qin, Y.; Doughty, R.B.; Moore, B. Fingerprint of Rice Paddies in Spatial–Temporal Dynamics of Atmospheric Methane Concentration in Monsoon Asia. Nat. Commun. 2020, 11, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, X.; Zhu, Q.; Jiang, H.; Li, X.; Cheng, M. Spatial distribution simulation and the climate effects of aerobic methane emissions from terrestrial plants in China. Acta Ecol. Sin. 2016, 36, 580–591. [Google Scholar]
- Xie, M.; Li, S.; Jiang, F.; Wang, T. Methane emissions from terrestrial plants over China and their effects on methane concentrations in lower troposphere. Chin. Sci. Bull. 2008, 54, 2365–2370. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Cai, Z.; Wang, D. Preliminary Budget of Methane Emissions from Natural Wetlands in China. Atmos. Environ. 2004, 38, 751–759. [Google Scholar] [CrossRef]
- Ding, W.-X.; Cai, Z.-C. Methane Emission from Natural Wetlands in China: Summary of Years 1995–2004 Studies. Pedosphere 2007, 17, 475–486. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, H. Spatial Variations in Methane Emissions from Natural Wetlands in China. Int. J. Environ. Sci. Technol. 2014, 11, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xiao, X.; Biradar, C.M.; Dong, J.; Qin, Y.; Menarguez, M.A.; Zhou, Y.; Zhang, Y.; Jin, C.; Wang, J.; et al. Spatiotemporal Patterns of Paddy Rice Croplands in China and India from 2000 to 2015. Sci. Total Environ. 2017, 579, 82–92. [Google Scholar] [CrossRef]
- Fu, C.; Yu, G. Estimation and Spatiotemporal Analysis of Methane Emissions from Agriculture in China. Environ. Manag. 2010, 46, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, G.Q. Methane Emissions in China 2007. Renew. Sustain. Energy Rev. 2014, 30, 886–902. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Bousquet, P.; Ciais, P.; Li, B.; Lin, X.; Tao, S.; Wang, Z.; Zhang, Y.; Zhou, F. Inventory of Anthropogenic Methane Emissions in Mainland China from 1980 to 2010. Atmos. Chem. Phys. 2016, 16, 14545–14562. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Tohjima, Y.; Saito, T.; Umezawa, T.; Hajima, T.; Hirata, R.; Saito, M.; Terao, Y. Methane Budget of East Asia, 1990–2015: A Bottom-up Evaluation. Sci. Total Environ. 2019, 676, 40–52. [Google Scholar] [CrossRef]
- Huang, M.; Wang, T.; Zhao, X.; Xie, X.; Wang, D. Estimation of atmospheric methane emissions and its spatial distribution in China during 2015. Acta Sci. Circumst. 2019, 39, 1371–1380. [Google Scholar]
- Gong, S.; Shi, Y. Evaluation of Comprehensive Monthly-Gridded Methane Emissions from Natural and Anthropogenic Sources in China. Sci. Total Environ. 2021, 784, 147116. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High Resolution Temporal Profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; You, L.; Liu, J.; Zhang, M. A Hybrid Wetland Map for China: A Synergistic Approach Using Census and Spatially Explicit Datasets. PLoS ONE 2012, 7, e47814. [Google Scholar] [CrossRef] [Green Version]
- Keppler, F.; Hamilton, J.T.G.; Braß, M.; Röckmann, T. Methane Emissions from Terrestrial Plants under Aerobic Conditions. Nature 2006, 439, 187–191. [Google Scholar] [CrossRef]
- Parsons, A.J.; Newton, P.C.D.; Clark, H.; Kelliher, F.M. Scaling Methane Emissions from Vegetation. Trends Ecol. Evol. 2006, 21, 423–424. [Google Scholar] [CrossRef]
- Yan, X.; Ohara, T.; Akimoto, H. Development of Region-Specific Emission Factors and Estimation of Methane Emission from Rice Fields in the East, Southeast and South Asian Countries. Glob. Chang. Biol. 2003, 9, 237–254. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL). Emissions Database for Global Atmospheric Research (EDGAR), Release EDGAR v6.0_GHG (1970–2018) of May 2021. Available online: https://edgar.jrc.ec.europa.eu/dataset_ghg60 (accessed on 25 October 2022).
- European Commission, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL). Emissions Database for Global Atmospheric Research (EDGAR), Release EDGAR v5.0 (1970–2015) of November 2019. Available online: https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG (accessed on 25 October 2022).
- The People’s Republic of China Second Biennial Update Report on Climate Change. Available online: mee.gov.cn (accessed on 25 October 2022).
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Jiang, H.; Xiang, W.; Chang, J.; Deng, X.; et al. Methane Emissions from Rice Paddies Natural Wetlands, and Lakes in China: Synthesis and New Estimate. Glob. Chang. Biol. 2013, 19, 19–32. [Google Scholar] [CrossRef]
- The People’s Republic of China Third National Communication on Climate Change. Available online: mee.gov.cn (accessed on 25 October 2022).
- Wei, D.; Wang, X. CH4 Exchanges of the Natural Ecosystems in China during the Past Three Decades: The Role of Wetland Extent and Its Dynamics. J. Geophys. Res. Biogeosci. 2016, 121, 2445–2463. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL). Emissions Database for Global Atmospheric Research (EDGAR), Release EDGAR v7.0_FT2021_GHG (1970–2021) of September 2022. Available online: https://edgar.jrc.ec.europa.eu/dataset_ghg70 (accessed on 25 October 2022).
Data Set | Required Data | Information |
---|---|---|
MODIS/Terra Land-Surface Temperature/Emissivity | Surface temperature 1 | 0.05° × 0.05°, 2010–2020, monthly |
MODIS/Terra + Aqua Land Cover Type L3 | Land cover type 2 | 0.05° × 0.05°, 2010–2020, yearly |
MODIS/Terra Vegetation Indices L3 | NDVI 3 | 0.05° × 0.05°, 2010–2020, monthly |
GPCP (Global Precipitation Climatology Project) | Rainfall 4 | 2.5° × 2.5°, 2010–2020, monthly |
MODIS/Terra Net Primary Production Gap-Filled L4 | Net Primary Production 5 | 500 m × 500 m, 2010–2020, yearly |
Spatial distribution map of wetlands in China | Wetland map 6 | 1 km × 1 km, 2000 |
Sunshine hours data in China | Sunshine hours 7 | 0.05° × 0.05°, 2010–2020, monthly |
Remote sensing monitoring data set of land use status and farmland ripening system in China | Crop type 8 | 1 km × 1 km, 2015 |
Vegetation Type | ||
---|---|---|
Coniferous forest | 0.069 | 9.478 |
Broadleaf forests | 0.055 | 7.5 |
Mixed forest | 0.063 | 8.06 |
Shrubs | 0.142 | 2.633 |
Grassland | 0.341 | 2.017 |
Sparse vegetation | 0.112 | 2.0 |
Wetland Type | Area (km2) | ER (mg CH4 m−2 h−1) |
---|---|---|
Freshwater marsh | 24,977 | 0.663 × T + 2.227 × P − 7.342 |
Peatland | 42,349 | 2.96 |
Swamp | 2561 | 0.05 |
Salt marsh | 24,086 | 0 |
Province | Paddy Field ER (kg CH4 hm−2 d−1) | Province | Paddy Field ER (kg CH4 hm−2 d−1) | ||||
---|---|---|---|---|---|---|---|
Early Rice | Late Rice | Double Season Rice | Early Rice | Late Rice | Double Season Rice | ||
Beijing | -- | -- | 1.26 | Hubei | 2.06 | 3.9 | 2.06 |
Tianjin | -- | -- | 1.08 | Hunan | 1.73 | 3.41 | 1.73 |
Hebei | -- | -- | 1.46 | Guangdong | 1.77 | 5.16 | 1.77 |
Shanxi | -- | -- | 0.63 | Guangxi | 1.46 | 4.91 | 1.46 |
Inner Mongolia | -- | -- | 0.85 | Hainan | 1.58 | 4.94 | 1.58 |
Liaoning | -- | -- | 0.88 | Chongqing | 0.77 | 1.85 | 0.77 |
Jilin | -- | -- | 0.53 | Sichuan | 0.77 | 1.85 | 0.77 |
Heilongjiang | -- | -- | 0.79 | Guizhou | 0.6 | 2.1 | 0.6 |
Shanghai | 1.46 | 2.75 | 1.46 | Yunnan | 0.28 | 0.76 | 0.28 |
Jiangsu | 1.89 | 2.76 | 1.89 | Tibet | -- | -- | 0.65 |
Zhejiang | 1.69 | 3.45 | 1.69 | Shaanxi | -- | -- | 1.19 |
Anhui | 1.97 | 2.76 | 1.97 | Gansu | -- | -- | 0.65 |
Fujian | 0.91 | 5.26 | 0.91 | Qinghai | -- | -- | -- |
Jiangxi | 1.82 | 4.58 | 1.82 | Ningxia | -- | -- | 0.7 |
Shandong | -- | -- | 2.0 | Xinjiang | -- | -- | 1 |
Henan | -- | -- | 1.7 |
Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 0.262 | 0.320 | 0.760 | 0.968 | 1.367 | 2.293 | 3.535 | 3.585 | 3.182 | 2.575 | 0.381 | 0.300 | 19.530 |
2011 | 0.177 | 0.293 | 0.675 | 1.013 | 1.334 | 2.375 | 3.527 | 3.599 | 3.125 | 2.559 | 0.409 | 0.249 | 19.335 |
2012 | 0.197 | 0.252 | 0.774 | 1.105 | 1.415 | 2.397 | 3.562 | 3.599 | 3.118 | 2.597 | 0.375 | 0.262 | 19.653 |
2013 | 0.242 | 0.301 | 0.872 | 1.070 | 1.450 | 2.509 | 3.612 | 3.556 | 3.091 | 2.573 | 0.409 | 0.290 | 19.977 |
2014 | 0.310 | 0.304 | 0.911 | 1.202 | 1.452 | 2.468 | 3.662 | 3.640 | 3.229 | 2.632 | 0.426 | 0.273 | 20.510 |
2015 | 0.259 | 0.302 | 0.838 | 1.140 | 1.418 | 2.442 | 3.527 | 3.603 | 3.144 | 2.681 | 0.387 | 0.255 | 19.996 |
2016 | 0.255 | 0.302 | 0.845 | 1.166 | 1.443 | 2.507 | 3.595 | 3.558 | 3.117 | 2.700 | 0.393 | 0.314 | 20.194 |
2017 | 0.271 | 0.314 | 0.768 | 1.027 | 1.356 | 2.245 | 3.388 | 3.571 | 3.303 | 3.037 | 0.387 | 0.286 | 19.955 |
2018 | 0.252 | 0.272 | 0.872 | 1.154 | 1.463 | 2.464 | 3.585 | 3.628 | 3.083 | 2.545 | 0.403 | 0.262 | 19.984 |
2019 | 0.236 | 0.294 | 0.853 | 1.156 | 1.364 | 2.444 | 3.565 | 3.609 | 3.103 | 2.534 | 0.406 | 0.297 | 19.861 |
2020 | 0.271 | 0.340 | 0.919 | 1.135 | 1.441 | 2.566 | 3.641 | 3.670 | 3.207 | 2.631 | 0.440 | 0.245 | 20.507 |
Spatial Resolution | Time Resolution | Time Series | |
---|---|---|---|
This study | 0.05° × 0.05° | Month | 2010–2020 |
EDGAR v7.0 [31] | 0.1° × 0.1° | Month | 1970–2021 |
EDGAR v6.0 [25] | 0.1° × 0.1° | Month | 1970–2018 |
EDGAR v5.0 [26] | 0.1° × 0.1° | Month | 1970–2015 |
Gong et al. (2021) [19] | 0.05° × 0.05° | Month | 2015 |
Huang et al. (2019) [18] | Province | Year | 2015 |
Chen et al. (2013) [28] | Province | Year | 2008 |
Peng et al. (2016) [16] | 0.1° × 0.1° | Year | 1980–2010 |
Zhang et al. (2014) [12] | Province | Year | 2007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Shi, Y. High Spatial and Temporal Resolution Methane Emissions Inventory from Terrestrial Ecosystems in China, 2010–2020. Atmosphere 2022, 13, 1966. https://doi.org/10.3390/atmos13121966
Yang Y, Shi Y. High Spatial and Temporal Resolution Methane Emissions Inventory from Terrestrial Ecosystems in China, 2010–2020. Atmosphere. 2022; 13(12):1966. https://doi.org/10.3390/atmos13121966
Chicago/Turabian StyleYang, Yongliang, and Yusheng Shi. 2022. "High Spatial and Temporal Resolution Methane Emissions Inventory from Terrestrial Ecosystems in China, 2010–2020" Atmosphere 13, no. 12: 1966. https://doi.org/10.3390/atmos13121966
APA StyleYang, Y., & Shi, Y. (2022). High Spatial and Temporal Resolution Methane Emissions Inventory from Terrestrial Ecosystems in China, 2010–2020. Atmosphere, 13(12), 1966. https://doi.org/10.3390/atmos13121966