Spatial-Temporal Variations of Extreme Precipitation Characteristics and Its Correlation with El Niño-Southern Oscillation during 1960–2019 in Hubei Province, China
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Sources and Processing
3.2. Extreme Precipitation Index
3.3. Analysis Methods
4. Results
4.1. Spatial-Temporal Variations of EPIs on the Annual Scale
4.1.1. Temporal Variations
4.1.2. Spatial Variations
4.2. Spatial-Temporal Variations of EPIs in Spring and Summer
4.2.1. Temporal Variations
4.2.2. Spatial Variations
4.3. Correlation between the EPIs and MEI Index
5. Discussion
5.1. Important Changes in the EPIs within Hubei Province and Their Effects
5.2. Connections between the El Niño-Southern Oscillation and EPIs and Its Prediction Function
6. Conclusions
- (1)
- The annual average value of PRCPTOT, RX1day, RX5day, SDII, R95p, and R99p is 1124.08, 95.75, 152.83, 12.56, 660.36, and 219.43 mm, respectively; the annual average value of R20, R10, CDD, and CWD is 15.86, 32.45, 29.11, and 6.23 day, respectively. The CWD decreased significantly (p < 0.05) during 1960–2019, and it would decrease in the recent future. The annual EPIs were higher in the eastern and southwestern Hubei compared to other regions, and extreme precipitation events will be increased in most regions;
- (2)
- The changing trend of EPIs in spring and summer was more obvious compared to that on an annual scale, both in temporal and space. The spring RX1day and R99p will be increased in the near future, which indicates that extreme rainstorm events may be increased in spring. Almost all EPIs except CDD would be increased in the recent future, showing that more attention should be paid in summer to the disaster prevention caused by extreme precipitation events;
- (3)
- In Hubei province, RX1day and R10 were positively correlated with El Niño-Southern Oscillation, while RX5day, CDD, CWD, and R99p were negatively correlated with El Niño-Southern Oscillation. MEI could be an indicator for EPIs in Hubei, the increase in MEI will result in the reduction of continued heavy rain and an increase of extreme short rainfall events;
- (4)
- More attention should be paid to meteorological observations and rainstorm predictions in Wuhan, Enshi, and Macheng (especially in summer) where there may be an increase in the intensity indices of extreme precipitation (RX1day, RX5day, R95p, and R99p). This may help to reduce the economic losses brought about by extreme precipitation events.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, H.; Chen, Y.; Li, D.; Li, W. Effect of sub-cloud evaporation on precipitation in the Tianshan Mountains (Central Asia) under the influence of global warming. Hydrol. Process. 2020, 34, 5557–5566. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Montanari, A. Global and regional increase of precipitation extremes under global warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation extremes under climate change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Duan, Y.; Li, Y.; Wang, H. Indirect Effects of Binary Typhoons on an Extreme Rainfall Event in Henan Province, China from 19 to 21 July 2021: 2. Numerical Study. J. Geophys. Res.-Atmos. 2022, 127, e2021JD036265. [Google Scholar] [CrossRef]
- Kazama, S.; Sato, A.; Kawagoe, S. Evaluating the cost of flood damage based on changes in extreme rainfall in Japan. Sustain. Sci. 2009, 4, 61–69. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Yang, L.; Signell, J.; Morin, E.; Goodrich, D.C. The Paroxysmal Precipitation of the Desert: Flash Floods in the Southwestern United States. Water Resour. Res. 2019, 55, 10218–10247. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Pradhan, R.K.; Petropoulos, G.P.; Pandey, V.; Gupta, M.; Yaduvanshi, A.; Jaafar, W.Z.W.; Mall, R.K.; Sahai, A.K. Long-Term Trend Analysis of Precipitation and Extreme Events over Kosi River Basin in India. Water 2021, 13, 1695. [Google Scholar] [CrossRef]
- Yan, C.; Pinhong, H.; Xuedong, Z.; Jie, Y. Influence of climate change on the volume capture ratio of annual rainfall’s partition. Clim. Chang. Res. 2021, 17, 525–536. [Google Scholar]
- Ma, M.; Wang, H.; Jia, P.; Liu, R.; Hong, Z.; Labriola, L.G.; Hong, Y.; Miao, L. Investigation of inducements and defenses of flash floods and urban waterlogging in Fuzhou, China, from 1950 to 2010. Nat. Hazards 2018, 91, 803–818. [Google Scholar] [CrossRef]
- Liang, X.-Z. Extreme rainfall slows the global economy. Nature 2022, 601, 193–194. [Google Scholar] [CrossRef]
- Li, M.-F.; Luo, W.; Li, H.; Liu, E.; Li, Y. Daily extreme precipitation indices and their impacts on rice yield-A case study over the tropical island in China. Theor. Appl. Climatol. 2018, 132, 503–513. [Google Scholar] [CrossRef]
- Wei, C.; Dong, X.; Yu, D.; Zhang, T.; Zhao, W.; Ma, Y.; Su, B. Spatio-temporal variations of rainfall erosivity, correlation of climatic indices and influence on human activities in the Huaihe River Basin, China. Catena 2022, 217, 106486. [Google Scholar] [CrossRef]
- Dey, R.; Bador, M.; Alexander, L.V.; Lewis, S.C. The drivers of extreme rainfall event timing in Australia. Int. J. Clim. 2021, 41, 6654–6673. [Google Scholar] [CrossRef]
- Ojara, M.A.; Lou, Y.; Babaousmail, H.; Wasswa, P. Trends and zonal variability of extreme rainfall events over East Africa during 1960–2017. Nat. Hazards 2021, 109, 33–61. [Google Scholar] [CrossRef]
- Henny, L.; Thorncroft, C.D.; Hsu, H.-H.; Bosart, L.F. Extreme Rainfall in Taiwan: Seasonal Statistics and Trends. J. Clim. 2021, 34, 4711–4731. [Google Scholar] [CrossRef]
- Fu, G.; Yu, J.; Yu, X.; Ouyang, R.; Zhang, Y.; Wang, P.; Liu, W.; Min, L. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Vu, T.M.; Mishra, A.K. Nonstationary frequency analysis of the recent extreme precipitation events in the United States. J. Hydrol. 2019, 575, 999–1010. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Huang, W.; Wang, Y.; Xu, Y.; Chen, H.; Kang, Z. Trends in observed mean and extreme precipitation within the Yellow River Basin, China. Theor. Appl. Climatol. 2019, 136, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Pan, X.; Yang, X.; Wang, X.; Wang, G.; Sun, S. Spatiotemporal Changes and Frequency Analysis of Multiday Extreme Precipitation in the Huai River Basin during 1960 to 2014. Adv. Meteorol. 2019, 2019, 6324878. [Google Scholar] [CrossRef] [Green Version]
- Grimm, A.M.; Tedeschi, R.G. ENSO and Extreme Rainfall Events in South America. J. Clim. 2009, 22, 1589–1609. [Google Scholar] [CrossRef]
- Villafuerte, M.Q., II; Matsumoto, J. Significant Influences of Global Mean Temperature and ENSO on Extreme Rainfall in Southeast Asia. J. Clim. 2015, 28, 1905–1919. [Google Scholar] [CrossRef]
- Cao, F.; Gao, T.; Dan, L.; Xie, L.; Gong, X. Variability of Summer Precipitation Events Associated with Tropical Cyclones over Mid-Lower Reaches of Yangtze River Basin: Role of the El Nino-Southern Oscillation. Atmosphere 2019, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Yang, X.-y.; Liu, J.; Wang, M.; Li, J. Dominant change pattern of extreme precipitation and its potential causes in Shandong Province, China. Sci. Rep. 2022, 12, 858. [Google Scholar] [CrossRef] [PubMed]
- King, A.D.; Alexander, L.V.; Donat, M.G. Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys. Res. Lett. 2013, 40, 2271–2277. [Google Scholar] [CrossRef]
- Li, C.; Tian, Q.; Yu, R.; Zhou, B.; Xia, J.; Burke, C.; Dong, B.; Tett, S.F.B.; Freychet, N.; Lott, F.; et al. Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016. Environ. Res. Lett. 2018, 13, 014015. [Google Scholar] [CrossRef]
- Wang, R.; Li, C. Spatiotemporal analysis of precipitation trends during 1961-2010 in Hubei province, central China. Theor. Appl. Climatol. 2016, 124, 385–399. [Google Scholar] [CrossRef]
- The Second Flood of 2020 Has Formed and Hubei is Experiencing the Ninth Round of Rainfall, and the Flood Control Situation Is Still Grim. Available online: https://baijiahao.baidu.com/s?id=1672527549078333503&wfr=spider&for=pc (accessed on 21 June 2022).
- Suizhou in Hubei Province Has Been Hit by Heavy Rains, with Some Areas Seeing 2.46 Meters of Water. Available online: http://finance.sina.com.cn/jjxw/2021-08-13/doc-ikqcfncc2556772.shtml (accessed on 4 September 2022).
- Xu, Z.; Pan, B.; Han, M.; Zhu, J.; Tian, L. Spatial-temporal distribution of rainfall erosivity, erosivity density and correlation with El Nino-Southern Oscillation in the Huaihe River Basin, China. Ecol. Inform. 2019, 52, 14–25. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Min, S.-K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Faye, A.; Akinsanola, A.A. Evaluation of extreme precipitation indices over West Africa in CMIP6 models. Clim. Dyn. 2022, 58, 925–939. [Google Scholar] [CrossRef]
- Weisberg, S. Applied Linear Regression; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 528. [Google Scholar]
- Tiku, M. Tables of the power of the F-test. J. Am. Stat. Assoc. 1967, 62, 525–539. [Google Scholar] [CrossRef]
- Güner Bacanli, Ü. Trend analysis of precipitation and drought in the A egean region, Turkey. Meteorol. Appl. 2017, 24, 239–249. [Google Scholar] [CrossRef]
- Baig, M.R.I.; Naikoo, M.W.; Ansari, A.H.; Ahmad, S.; Rahman, A. Spatio-temporal analysis of precipitation pattern and trend using standardized precipitation index and Mann–Kendall test in coastal Andhra Pradesh. Model. Earth Syst. Environ. 2022, 8, 2733–2752. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, Z.; Huang, J. Long-term trend and abrupt change for major climate variables in the upper Yellow River Basin. Acta Meteorol. Sin.-Engl. Ed. 2007, 21, 204. [Google Scholar]
- Da-Quan, Z.; Guo-Lin, F.; Jing-Guo, H. Trend of extreme precipitation events over China in last 40 years. Chin. Phys. B 2008, 17, 736. [Google Scholar] [CrossRef]
- Dong, D.; Tao, W.; Lau, W.K.; Li, Z.; Huang, G.; Wang, P. Interdecadal variation of precipitation over the Hengduan Mountains during rainy seasons. J. Clim. 2019, 32, 3743–3760. [Google Scholar] [CrossRef]
- Cao, Q.; Hao, Z.; Yuan, F.; Su, Z.; Berndtsson, R.; Hao, J.; Nyima, T. Impact of ENSO regimes on developing-and decaying-phase precipitation during rainy season in China. Hydrol. Earth Syst. Sc. 2017, 21, 5415–5426. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Hu, Z.; Wang, Z.; Cao, S.; Yang, Y.; Qu, X.; Zhao, W. Spatiotemporal variations in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970–2018). Quat. Int. 2021, 592, 80–96. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Yin, Y.; Shahid, S. Analysis of historical drought and flood characteristics of Hengshui during the period 1649–2018: A typical city in North China. Nat. Hazards 2021, 108, 2081–2099. [Google Scholar] [CrossRef]
- Granero, M.S.; Segovia, J.T.; Pérez, J.G. Some comments on Hurst exponent and the long memory processes on capital markets. Phys. A Stat. Mech. Its Appl. 2008, 387, 5543–5551. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y. Assessing the Climate Tendency over the Yangtze River Delta, China: Properties, Dry/Wet Event Frequencies, and Causes. Water 2020, 12, 2734. [Google Scholar] [CrossRef]
- Li, M.; Cao, F.; Wang, G.; Chai, X.; Zhang, L. Evolutional Characteristics of Regional Meteorological Drought and Their Linkages with Southern Oscillation Index across the Loess Plateau of China during 1962–2017. Sustainability 2020, 12, 7237. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Ren, L.; Dong, X. Spatio-Temporal Characteristics of Drought and Its Relationship with El Niño-Southern Oscillation in the Songhua River Basin from 1960 to 2019. Water 2022, 14, 866. [Google Scholar] [CrossRef]
- Yang, X.; Wu, J.; Liu, J.; Ye, X. Changes of Extreme Precipitation and Possible Influence of ENSO Events in a Humid Basin in China. Atmosphere 2021, 12, 1522. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y. Numerical Simulation on the Formation of Mesoscale Vortex in Col Field. Acta Meteorol. Sin. 2012, 26, 112–128. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Rong, X.; Li, T. Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China. Clim. Dyn. 2014, 43, 1257–1269. [Google Scholar] [CrossRef]
- Xiong, L.; Yan, L.; Du, T.; Yan, P.; Li, L.; Xu, W. Impacts of climate change on urban extreme rainfall and drainage infrastructure performance: A case study in Wuhan City, China. Irrig. Drain 2019, 68, 152–164. [Google Scholar] [CrossRef]
- Doyle, M.W.; Havlick, D.G. Infrastructure and the environment. Annu. Rev. Environ. Resour. 2009, 34, 349–373. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Dong, X.; Yu, D.; Liu, J.; Reta, G.; Zhao, W.; Kuriqi, A.; Su, B. An alternative to the Grain for Green Program for soil and water conservation in the upper Huaihe River basin, China. J. Hydrol. Reg. Stud. 2022, 43, 101180. [Google Scholar] [CrossRef]
- Skrobek, D.; Krzywanski, J.; Sosnowski, M.; Kulakowska, A.; Zylka, A.; Grabowska, K.; Ciesielska, K.; Nowak, W. Prediction of sorption processes using the deep learning methods (long short-term memory). Energies 2020, 13, 6601. [Google Scholar] [CrossRef]
- Sosnowski, M.; Krzywanski, J.; Ščurek, R. Artificial intelligence and computational methods in the modeling of complex systems. Entropy 2021, 23, 586. [Google Scholar] [CrossRef] [PubMed]
- Krzywanski, J.; Sztekler, K.; Bugaj, M.; Kalawa, W.; Grabowska, K.; Chaja, P.R.; Sosnowski, M.; Nowak, W.; Mika, Ł.; Bykuć, S. Adsorption chiller in a combined heating and cooling system: Simulation and optimization by neural networks. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, e137054. [Google Scholar]
- Xiao, M.; Zhang, Q.; Singh, V.P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Clim. 2015, 35, 3556–3567. [Google Scholar] [CrossRef]
- Villafuerte, M.Q., II; Matsumoto, J.; Kubota, H. Changes in extreme rainfall in the Philippines (1911–2010) linked to global mean temperature and ENSO. Int. J. Clim. 2015, 35, 2033–2044. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Singh, V.P. Spatiotemporal patterns of precipitation regimes in the Huai River basin, China, and possible relations with ENSO events. Nat. Hazards 2016, 82, 2167–2185. [Google Scholar] [CrossRef]
- Agilan, V.; Umamahesh, N.V. El Nino Southern Oscillation cycle indicator for modeling extreme rainfall intensity over India. Ecol. Indic. 2018, 84, 450–458. [Google Scholar] [CrossRef]
No. | Station Name | Longitude | Latitude | Elevation | No. | Station Name | Longitude | Latitude | Elevation |
---|---|---|---|---|---|---|---|---|---|
1 | Xunxi | 33°00′ | 110°25′ | 249 m | 14 | Enshi | 30°17′ | 109°28′ | 457 m |
2 | Fangxian | 32°02′ | 110°46′ | 427 m | 15 | Wufeng | 30°12′ | 110°40′ | 620 m |
3 | Laohekou | 32°23′ | 111°40′ | 90 m | 16 | Yichang | 30°42′ | 111°18′ | 133 m |
4 | Xiangyang | 32°02′ | 112°10′ | 70 m | 17 | Jingzhou | 30°21′ | 112°09′ | 32 m |
5 | Zaoyang | 32°09′ | 112°45′ | 125 m | 18 | Xiaogan | 30°54′ | 113°57′ | 24 m |
6 | Badong | 31°02′ | 110°22′ | 334 m | 19 | Tianmen | 30°40′ | 113°10′ | 34 m |
7 | Xingshan | 31°14′ | 110°46′ | 252 m | 20 | Wuhan | 30°37′ | 114°08′ | 23 m |
8 | Zhongxiang | 31°10′ | 112°34′ | 66 m | 21 | Laifeng | 29°31′ | 109°25′ | 460 m |
9 | Suizhou | 31°43′ | 113°23′ | 86 m | 22 | Jianli | 29°50′ | 112°54′ | 31 m |
10 | Dawu | 31°34′ | 114°07′ | 102 m | 23 | Honghu | 29°49′ | 113°27′ | 24 m |
11 | Macheng | 31°11′ | 115°01′ | 60 m | 24 | Jiayu | 29°59′ | 113°55′ | 36 m |
12 | Lichuan | 30°17′ | 108°56′ | 1086 m | 25 | Yingshan | 30°44′ | 115°40′ | 124 m |
13 | Jianshi | 30°36′ | 109°43′ | 559 m | 26 | Yangxin | 29°51′ | 115°12′ | 42 m |
Type of Indices | Name of Indices | Abbreviation | Definition |
---|---|---|---|
Persistence indices | Continued drought days/d | CDD | Maximum number of continued days when precipitation < 1 mm |
Continued wet days/d | CWD | Maximum number of continued days when precipitation > 1 mm | |
Adiabatic indices | Number of heavy rain days/d | R10 | Annual count when precipitation ≥ 10 mm |
Number of very heavy rain days/d | R20 | Annual count when precipitation ≥ 20 mm | |
Annual total precipitation/mm | PRCPTOT | Annual total precipitation when daily precipitation ≥ 1 mm | |
Relative indices | Very wet days/mm | R95p | Annual total precipitation from days > 95th percentile |
Extremely wet days/mm | R99p | Annual total precipitation from days > 99th percentile | |
Intensity indices | Max-1-day precipitation amount/mm | RX1day | Maximum 1-day precipitation |
Max-5-day precipitation amount /mm | RX5day | Maximum continued 5-day precipitation | |
Simple daily intensity index/(mm/d) | SDII | The ratio of annual total precipitation to the number of wet days ≥ 1 mm |
EPI | Average Value | Change Rate/per Year | p Value for F-Test | Hurst Value | Future Trend |
---|---|---|---|---|---|
PRCPTOT | 1124.08 mm | −0.2136 | 0.86 | 0.44 | Up |
RX1day | 95.75 mm | 0.0511 | 0.66 | 0.43 | Down |
RX5day | 152.83 mm | −0.1151 | 0.61 | 0.37 | Up |
R20 | 15.86 day | 0.0072 | 0.75 | 0.36 | Down |
R10 | 32.45 day | −0.0214 | 0.53 | 0.43 | Up |
SDII | 12.56 mm | 0.0054 | 0.59 | 0.49 | Down |
CDD | 29.11 day | −0.0331 | 0.42 | 0.51 | Down |
CWD | 6.23 day | −0.0139 | 0.03 | 0.68 | Down |
R95p | 660.36 mm | 0.3065 | 0.65 | 0.51 | Up |
R99p | 219.43 mm | 0.1344 | 0.58 | 0.51 | Up |
EPI | Average Value | Change Rate/per Year | p Value for F-Test | Hurst Value | Future Trend |
---|---|---|---|---|---|
PRCPTOT | 319.55 mm | −0.3078 | 0.55 | 0.54 | Down |
RX1day | 54.27 mm | 0.0389 | 0.61 | 0.57 | Up |
RX5day | 84.04 mm | −0.0224 | 0.85 | 0.59 | Down |
R20 | 4.67 day | 0.0010 | 0.91 | 0.55 | Up |
R10 | 10.26 day | −0.0165 | 0.36 | 0.59 | Down |
SDII | 11.52 mm | 0.0178 | 0.11 | 0.53 | Up |
CDD | 12.29 day | 0.0085 | 0.63 | 0.53 | Up |
CWD | 4.49 day | −0.0137 | 0.06 | 0.59 | Down |
R95p | 143.23 mm | 0.0951 | 0.59 | 0.47 | Down |
R99p | 54.27 mm | 0.0389 | 0.61 | 0.57 | Up |
EPI | Average Value | Change Rate/per Year | p Value for F-Test | Hurst Value | Future Trend |
---|---|---|---|---|---|
PRCPTOT | 477.52 mm | 0.4182 | 0.65 | 0.67 | Up |
RX1day | 87.96 mm | 0.0678 | 0.60 | 0.56 | Up |
RX5day | 142.79 mm | −0.0560 | 0.82 | 0.49 | Up |
R20 | 7.61 day | 0.0088 | 0.57 | 0.66 | Up |
R10 | 12.77 day | 0.0063 | 0.77 | 0.74 | Up |
SDII | 17.70 mm | 0.0148 | 0.41 | 0.56 | Up |
CDD | 13.92 day | −0.0299 | 0.12 | 0.80 | Down |
CWD | 4.68 day | −0.0075 | 0.30 | 0.48 | Up |
R95p | 232.27 mm | 0.2151 | 0.51 | 0.61 | Up |
R99p | 87.96 mm | 0.0678 | 0.60 | 0.56 | Up |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Tang, H.; Li, J.; Hou, Y. Spatial-Temporal Variations of Extreme Precipitation Characteristics and Its Correlation with El Niño-Southern Oscillation during 1960–2019 in Hubei Province, China. Atmosphere 2022, 13, 1922. https://doi.org/10.3390/atmos13111922
Wang W, Tang H, Li J, Hou Y. Spatial-Temporal Variations of Extreme Precipitation Characteristics and Its Correlation with El Niño-Southern Oscillation during 1960–2019 in Hubei Province, China. Atmosphere. 2022; 13(11):1922. https://doi.org/10.3390/atmos13111922
Chicago/Turabian StyleWang, Weizheng, Huiya Tang, Jinping Li, and Yukun Hou. 2022. "Spatial-Temporal Variations of Extreme Precipitation Characteristics and Its Correlation with El Niño-Southern Oscillation during 1960–2019 in Hubei Province, China" Atmosphere 13, no. 11: 1922. https://doi.org/10.3390/atmos13111922
APA StyleWang, W., Tang, H., Li, J., & Hou, Y. (2022). Spatial-Temporal Variations of Extreme Precipitation Characteristics and Its Correlation with El Niño-Southern Oscillation during 1960–2019 in Hubei Province, China. Atmosphere, 13(11), 1922. https://doi.org/10.3390/atmos13111922