Variation Characteristics and Source Analysis of Pollutants in Jinghong before and after the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area and the Monitoring Locations
2.2. Data Sources and Processing Methods
2.3. HYSPLIT Model
3. Results and Analyses
3.1. The Present State of Jinghong’s Air Quality
3.2. Characteristics of Air Pollution
3.2.1. Levels of Pollutant Concentration
3.2.2. Seasonal Variations of Air Pollutants
3.2.3. Daily Variations of Air Pollutants
3.3. The Relationship between Meteorological Elements and Pollutants
4. Source Apportionment
4.1. Estimation of Source Inventories for Emissions of Air Pollutants
4.2. Correlation Analysis of AQI and Air Pollutant Concentration
4.3. Backward Trajectory and Cluster Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Kan, H.; London, S.J.; Chen, G.; Zhang, Y.; Song, G.; Zhao, N.; Jiang, L.; Chen, B. Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ. Int. 2007, 33, 376–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sather, M.E.; Cavender, K. Update of long-term trends analysis of ambient 8-hour ozone and precursor monitoring data in the South Central US; encouraging news. J. Environ. Monit. 2012, 14, 666–676. [Google Scholar] [CrossRef]
- Marenco, A. Variations of CO and O3 in the troposphere: Evidence of O3 photochemistry. Atmos. Environ. 1986, 20, 911–918. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B.; Weschler, C.J. Indoor Exposure to “Outdoor PM10”: Assessing Its Influence on the Relationship Between PM10 and Short-term Mortality in US Cities. Epidemiology 2012, 23, 870–878. [Google Scholar] [CrossRef]
- Su, H.; Ge, B.; Chen, X. Pollution characteristics and source analysis of PM2.5 during spring and winter in urban area in typical cities. Environ. Eng. 2018, 36, 99–103. [Google Scholar]
- Chyang, C.-S.; Han, Y.-L.; Zhong, Z.-C. Study of HCl absorption by CaO at high temperature. Energy Fuel 2009, 23, 3948–3953. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Y.; Xu, W.; Liu, J.; Wan, Z.; Zhang, X.; Li, X. Study on the spatiotemporal characteristics and socioeconomic driving factors of air pollution in China. Ecol. Environ. Sci. 2018, 27, 518–526. [Google Scholar]
- He, J.; Wu, L.; Mao, H.; Li, R. Impacts of meteorological conditions on air quality in urban Langfang, Hebei province. Res. Environ. Sci. 2016, 29, 791–799. [Google Scholar]
- Wang, S.; Li, W.; Deng, X.; Deng, T.; Li, F.; Tan, H. Characteristics of air pollutant transport channels in Guangzhou region. China Environ. Sci. 2015, 35, 2883–2890. [Google Scholar]
- Hu, J.; Qian, X.; Yin, W.; Huang, Y. Characteristics and causes of air pollution in Mengla County of Xishuangbanna prefecture in recent 3 years. Acta Sci. Circumstantiae 2021, 41, 4388–4395. [Google Scholar]
- Draxier, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Lin, G.M.; Chyang, C.-S. Removal of HCl in flue gases by calcined limestone at high temperatures. Energy Fuels 2017, 31, 12417–12424. [Google Scholar] [CrossRef]
- Bera, B.; Bhattacharjee, S.; Sengupta, N.; Saha, S. Variation and dispersal of PM10 and PM2.5 during COVID-19 lockdown over Kolkata metropolitan city, India investigated through HYSPLIT model. Geosci. Front. 2022, 13, 101291. [Google Scholar] [CrossRef]
- Escudero, M.; Stein, A.F.; Draxler, R.R.; Querol, X.; Alastuey, A.; Castillo, S.; Avila, A. Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmos. Res. 2011, 99, 518–527. [Google Scholar] [CrossRef]
- Shan, W.; Yin, Y.; Lu, H.; Liang, S. A meteorological analysis of ozone episodes using HYSPLIT model and surface data. Atmos. Res. 2009, 4, 767–776. [Google Scholar] [CrossRef]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Fan, X.; Lu, J.; Qiu, M.; Xiao, X. Changes in travel behaviors and intentions during the COVID-19 pandemic and recovery period: A case study of China. J. Outdoor Recreat. Tour. 2022, 100522. [Google Scholar] [CrossRef]
- Xie, S.; Li Qi, Y.Z.; Tang, X. Characteristics of air pollution in Beijing during sand-dust storm periods. Water Air Soil Pollut. Focus 2005, 5, 217–229. [Google Scholar] [CrossRef]
- Teng, M.; Yang, K.; Shi, Y.; Luo, Y. Study on the Temporal and Spatial Variation of PM2.5 in Eight Main Cities of Yunnan Province. In Proceedings of the 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–7. [Google Scholar]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C. Variations of Air Quality and Atmospheric Environmental Capacity Assessment in the Typical Urban Areas over Yunnan Plateau. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2019. [Google Scholar]
- Yang, Q.J. Observation and Simulation Studies on Urban Air Quality Changes and the Influencing Factors under the Background of Clean Atmospheric Environment over the Yunnan Plateau. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2020. [Google Scholar]
- Yin, D.; Zhao, S.; Qu, J. Spatial and seasonal variations of gaseous and particulate matter pollutants in 31 provincial capital cities, China. Air Qual. Atmos. Health 2017, 10, 359–370. [Google Scholar] [CrossRef]
- Paraschiv, S.; Barbuta-Misu, N.; Paraschiv, S.L. Influence of NO2, NO and meteorological conditions on the tropospheric O3 concentration at an industrial station. Energy Rep. 2020, 6, 231–236. [Google Scholar] [CrossRef]
- Danek, T.; Weglinska, E.; Zareba, M. The influence of meteorological factors and terrain on air pollution concentration and migration: A geostatistical case study from Krakow, Poland. Sci. Rep. 2022, 12, 11050. [Google Scholar] [CrossRef]
- Ahmed, D.; Shams, Z.I.; Ahmed, M.; Siddiqui, M.F. Spatio-Temporal Variations of Lower Tropospheric Pollutants and Their Relationship With Meteorological Factors in Karachi, Pakistan. Arab Gulf J. Sci. Res. 2022, 39, 118–137. [Google Scholar] [CrossRef]
- Żyromski, A.; Biniak-Pieróg, M.; Burszta-Adamiak, E.; Zamiar, Z. Evaluation of relationship between air pollutant concentration and meteorological elements in winter months. J. Water Land Dev. 2014, 22, 25–32. [Google Scholar] [CrossRef]
- Pacitto, A.; Amato, F.; Moreno, T.; Pandolfi, M.; Fonseca, A.; Mazaheri, M.; Stabile, L.; Buonanno, G.; Querol, X. Effect of ventilation strategies and air purifiers on the children’s exposure to airborne particles and gaseous pollutants in school gyms. Sci. Total Environ. 2020, 712, 135673. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, T.; Li, Z.; Tao, Y.; Wang, F.; Zhang, X.; Xu, C.; Ma, S.; Huang, J. Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013–2016. Environ. Sci. Pollut. Res. 2018, 25, 15174–15190. [Google Scholar] [CrossRef]
- Rypdal, K.; Rive, N.; Berntsen, T.; Fagerli, H.; Klimont, Z.; Mideksa, T.K.; Fuglestvedt, J.S. Climate and air quality-driven scenarios of ozone and aerosol precursor abatement. Environ. Sci. Policy 2009, 12, 855–869. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, B.; Li, J.; Hao, Y.; Yang, W.; Shi, F.; Chen, Y.; Simayi, M.; Xie, S. Characteristics of six criteria air pollutants before, during, and after a severe air pollution episode caused by biomass burning in the southern Sichuan Basin, China. Atmos. Environ. 2019, 215, 116840. [Google Scholar] [CrossRef]
- Bein, K.J.; Zhao, Y.; Johnston, M.V.; Wexler, A.S. Interactions between boreal wildfire and urban emissions. J. Geophys. Res. Atmos. 2008, 113, D07304. [Google Scholar] [CrossRef]
- Punsompong, P.; Pani, S.K.; Wang, S.-H.; Pham, T.T.B. Assessment of biomass-burning types and transport over Thailand and the associated health risks. Atmos. Environ. 2021, 247, 118176. [Google Scholar] [CrossRef]
Year | Days/d | AQI | Excellent Rate | Pollution Rate | Number of Monitoring Days/d | ||||
---|---|---|---|---|---|---|---|---|---|
Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | |||||
2017 | 219 | 114 | 18 | 3 | 0 | 50.86 | 94.07% | 5.93% | 354 |
2018 | 198 | 141 | 7 | 1 | 0 | 48.65 | 97.69% | 2.31% | 347 |
2019 | 151 | 159 | 39 | 9 | 2 | 62.25 | 85.87% | 14.13% | 361 |
2020 | 180 | 142 | 22 | 9 | 10 | 59.89 | 88.64% | 11.36% | 364 |
2021 | 239 | 95 | 23 | 4 | 0 | 49.22 | 92.27% | 7.73% | 362 |
Year | Statistical Values | AQI | SO2/ (μg·m−3) | NO2/ (μg·m−3) | CO/ (mg·m−3) | O3-8 h/ (μg·m−3) | PM2.5/ (μg·m−3) | PM10/ (μg·m−3) |
---|---|---|---|---|---|---|---|---|
2017 | Average ± S.d | 50.86 ± 26.20 | 8.38 ± 2.81 | 17.65 ± 7.71 | 0.52 ± 0.20 | 73.72 ± 39.77 | 25.53 ± 18.76 | 48.67 ± 27.40 |
Measured value | 14–162 | 3.5–31 | 4.5–42.5 | 0.2–1.4 | 15–219 | 2–114.5 | 9–164.5 | |
2018 | Average ± S.d | 48.65 ± 21.98 | 6.84 ± 2.46 | 18 ± 7.02 | 0.63 ± 0.17 | 71.63 ± 30.74 | 25.61 ± 18.36 | 48.11 ± 25.52 |
Measured value | 15.5–151.5 | 2.5–32.5 | 6.5–37.5 | 0.3–1.2 | 9–159 | 55–114.5 | 10.5–139.5 | |
2019 | Average ± S.d | 62.25 ± 34.32 | 6.05 ± 2.34 | 21.82 ± 9.46 | 0.66 ± 0.23 | 89.93 ± 37.39 | 36.42 ± 27.69 | 63.59 ± 42.01 |
Measured value | 16.5–211 | 1.5–23 | 4–44 | 0.2–1.6 | 17–185 | 6–164 | 11.5–230 | |
2020 | Average ± S.d | 59.89 ± 43.75 | 6.99 ± 2.08 | 19.59 ± 8.92 | 0.76 ± 0.21 | 82.56 ± 42.52 | 34.43 ± 36.87 | 55.58 ± 39.99 |
Measured value | 11–295.5 | 3–15 | 5.5–52.5 | 0.2–1.8 | 10.5–221 | 6–247.5 | 10–230 | |
2021 | Average ± S.d | 49.22 ± 29.70 | 8.64 ± 2.80 | 19.11 ± 10.75 | 0.63 ± 0.22 | 76.88 ± 36.37 | 25.14 ± 24.21 | 46.51 ± 39.07 |
Measured value | 10–178.5 | 4.5–47.5 | 7–58 | 0.2–1.5 | 20.5–187.5 | 5.5–136 | 9.5–224 | |
Annual Average | Average ± S.d | 54.23 ± 32.69 | 7.38 ± 2.70 | 19.26 ± 9.01 | 0.64 ± 0.21 | 79.03 ± 38.19 | 29.47 ± 26.65 | 52.53 ± 36.15 |
Measured value | 10–295.5 | 1.5–47.5 | 4–58 | 0.2–1.8 | 9–221 | 2–247.5 | 9–230 |
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Annual Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wind speed m/s | 0.7 | 0.9 | 0.9 | 0.9 | 1.0 | 1.2 | 0.9 | 0.9 | 0.7 | 0.6 | 0.6 | 0.7 | 0.8 |
Source of Pollution | SO2 | NOx | CO | PM2.5 | PM10 |
---|---|---|---|---|---|
Industrial companies | 1233.62 | 948.74 | 8098.84 | 409.06 | 1168.75 |
Resident source | 485.12 | 231.74 | 83.43 | 238.41 | |
Mobile Sources | 411.39 | 9879.27 | 10,751.41 | 470.62 | 494.83 |
Agricultural sources | 529.30 | ||||
Dust sources | 1878.26 | 5234.31 | |||
Biomass combustion | 166.57 | 917.73 | 15,683.14 | 2134.04 | 2178.04 |
Restaurant Fumes | 84.58 | 39.28 | 366.74 | 459.72 | |
Total pollutant emissions | 2296.70 | 12,591.36 | 34,572.67 | 5342.15 | 9774.06 |
AQI | SO2 | NO2 | CO | O3-8 h | PM2.5 | PM10 | ||
---|---|---|---|---|---|---|---|---|
Year-round | AQI | 1 | ||||||
SO2 | 0.265 ** | 1 | ||||||
NO2 | 0.799 ** | 0.229 ** | 1 | |||||
CO | 0.307 ** | 0.078 * | 0.414 ** | 1 | ||||
O3-8 h | 0.876 ** | 0.226 ** | 0.630 ** | 0.140 ** | 1 | |||
PM2.5 | 0.938 ** | 0.234 ** | 0.840 ** | 0.387 ** | 0.782 ** | 1 | ||
PM10 | 0.950 ** | 0.267 ** | 0.845 ** | 0.357 ** | 0.763 ** | 0.938 ** | 1 | |
Spring | AQI | 1 | ||||||
SO2 | 0.347 ** | 1 | ||||||
NO2 | 0.811 ** | 0.370 ** | 1 | |||||
CO | 0.242 ** | −0.014 | 0.258 ** | 1 | ||||
O3-8 h | 0.883 ** | 0.335 * | 0.657 | 0.071 | 1 | |||
PM2.5 | 0.948 ** | 0.278 ** | 0.831 ** | 0.404 ** | 0.785 ** | 1 | ||
PM10 | 0.948 ** | 0.353 ** | 0.859 ** | 0.380 ** | 0.791 ** | 0.960 ** | 1 | |
Summer | AQI | 1 | ||||||
SO2 | 0.125 ** | 1 | ||||||
NO2 | 0.487 ** | 0.017 | 1 | |||||
CO | 0.230 ** | −0.096 | 0.522 ** | 1 | ||||
O3-8 h | 0.764 ** | 0.139 ** | 0.361 ** | 0.144 | 1 | |||
PM2.5 | 0.742 ** | −0.083 | 0.512 ** | 0.273 ** | 0.532 ** | 1 | ||
PM10 | 0.844 ** | 0.079 | 0.562 ** | 0.277 ** | 0.493 ** | 0.742 ** | 1 | |
Autumn | AQI | 1 | ||||||
SO2 | 0.056 | 1 | ||||||
NO2 | 0.718 ** | −0.053 | 1 | |||||
CO | 0.178 ** | −0.029 | 0.244 ** | 1 | ||||
O3-8 h | 0.820 ** | 0.059 | 0.495 ** | 0.132 | 1 | |||
PM2.5 | 0.880 ** | 0.024 | 0.782 ** | 0.214 ** | 0.677 ** | 1 | ||
PM10 | 0.920 ** | 0.067 | 0.763 ** | 0.199 * | 0.632 ** | 0.902 ** | 1 | |
Winter | AQI | 1 | ||||||
SO2 | 0.112 * | 1 | ||||||
NO2 | 0.435 ** | −0.395 ** | 1 | |||||
CO | 0.181 * | 0.005 | 0.278 ** | 1 | ||||
O3-8 h | 0.720 ** | −0.008 | 0.178 ** | −0.092 | 1 | |||
PM2.5 | 0.921 ** | 0.78 | 0.467 ** | 0.293 ** | 0.617 ** | 1 | ||
PM10 | 0.866 ** | 0.149 ** | 0.681 ** | 0.188 * | 0.458 ** | 0.852 ** | 1 |
Quarter | Track | Frequency | SO2/ (μg·m−3) | NO2/ (μg·m−3) | CO/ (mg·m−3) | O3/ (μg·m−3) | PM2.5/ (μg·m−3) | PM10/ (μg·m−3) |
---|---|---|---|---|---|---|---|---|
Spring | 1 | 36.80% | 5.88 | 19.97 | 0.84 | 62.14 | 63.27 | 51.85 |
2 | 26.40% | 6.27 | 29.43 | 0.97 | 52.17 | 80.64 | 66.11 | |
3 | 28.37% | 6.36 | 31.38 | 1.09 | 70.70 | 92.65 | 78.78 | |
4 | 8.43% | 4.52 | 19.73 | 0.80 | 27.98 | 19.60 | 24.23 | |
Summer | 1 | 83.66% | 5.43 | 13.15 | 0.52 | 15.99 | 11.11 | 25.97 |
2 | 1.11% | 3.60 | 11.8 | 0.48 | 18.80 | 11.10 | 18.80 | |
3 | 14.13% | 4.46 | 11.9 | 0.52 | 24.81 | 10.77 | 24.81 | |
Autumn | 1 | 21.39% | 8.04 | 20.76 | 0.78 | 10.85 | 16.71 | 42.68 |
2 | 46.39% | 6.94 | 18.82 | 0.72 | 9.82 | 16.87 | 42.97 | |
3 | 31.11% | 7.68 | 21.57 | 0.80 | 10.59 | 19.87 | 49.27 | |
4 | 1.11% | 7.00 | 11.75 | 0.61 | 9.63 | 11.50 | 30.00 | |
Winter | 1 | 14.44% | 6.38 | 17.51 | 0.61 | 39.05 | 24.22 | 35.58 |
2 | 17.78% | 6.31 | 21.55 | 0.71 | 47.23 | 31.25 | 46.16 | |
3 | 32.22% | 5.60 | 22.71 | 0.79 | 44.61 | 35.72 | 50.29 | |
4 | 35.56% | 6.82 | 20.34 | 0.78 | 40.36 | 35.08 | 51.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wang, Z.; Shi, J.; Zhong, Y.; Ding, Y. Variation Characteristics and Source Analysis of Pollutants in Jinghong before and after the COVID-19 Pandemic. Atmosphere 2022, 13, 1846. https://doi.org/10.3390/atmos13111846
Zhou Z, Wang Z, Shi J, Zhong Y, Ding Y. Variation Characteristics and Source Analysis of Pollutants in Jinghong before and after the COVID-19 Pandemic. Atmosphere. 2022; 13(11):1846. https://doi.org/10.3390/atmos13111846
Chicago/Turabian StyleZhou, Zengchun, Zhijun Wang, Jianwu Shi, Yunhong Zhong, and Yinhu Ding. 2022. "Variation Characteristics and Source Analysis of Pollutants in Jinghong before and after the COVID-19 Pandemic" Atmosphere 13, no. 11: 1846. https://doi.org/10.3390/atmos13111846
APA StyleZhou, Z., Wang, Z., Shi, J., Zhong, Y., & Ding, Y. (2022). Variation Characteristics and Source Analysis of Pollutants in Jinghong before and after the COVID-19 Pandemic. Atmosphere, 13(11), 1846. https://doi.org/10.3390/atmos13111846