Impacts of Urban Rail Transit on On-Road Carbon Emissions: A Structural Equation Modeling Approach
Abstract
:1. Introduction
2. Literature Review
3. Method
3.1. Structural Equation Modeling
3.2. Data
4. Results
4.1. Emission-Abatement Effects
4.2. Emission-Intensification Effects
4.3. Varied Emission Effects by Mediator
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Data and Statistics. Available online: https://www.iea.org/data-and-statistics/data-browser/?country=CHINAREG&fuel=CO2%20emissions&indicator=CO2BySource (accessed on 1 June 2022).
- Ministry of Transport of People’s Republic of China. Management Solutions for the Construction of National Public Transit Metropolis Demonstration Projects. 2022. Available online: http://www.gov.cn/zhengce/zhengceku/2022-04/11/content_5684470.htm (accessed on 1 June 2022).
- National Development and Reform Commission of People’s Republic of China. Action Plan for the “14th Five-Year Plan” New Urbanization. 2022. Available online: http://www.gov.cn/zhengce/zhengceku/2022-07/12/content_5700632.htm (accessed on 1 June 2022).
- China Association of Metros. 2021 Urban Rail Transit Annual Report. 2022. Available online: https://www.camet.org.cn/tjxx/9944 (accessed on 1 June 2022).
- Anderson, M.L. Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion. Am. Econ. Rev. 2014, 104, 2763–2796. [Google Scholar] [CrossRef] [Green Version]
- Bauernschuster, S.; Hener, T.; Rainer, H. When Labor Disputes Bring Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution, and Health. Am. Econ. J. Econ. Policy 2017, 9, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Du, Z. Can urban rail transit curb automobile energy consumption? Energy Policy 2017, 105, 120–127. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, X.; Sun, W.; Wang, J. The Effect of a New Subway Line on Local Air Quality: A Case Study in Changsha. Transp. Res. Part D Transp. Environ. 2019, 68, 26–38. [Google Scholar] [CrossRef]
- Mohring, H. Optimization and Scale Economies in Urban Bus Transportation. Am. Econ. Rev. 1972, 62, 591–604. [Google Scholar]
- Vickrey, W.S. Congestion Theory and Transport Investment. Am. Econ. Rev. 1969, 59, 251–260. [Google Scholar]
- Yang, J.; Chen, J.; Le, X.; Zhang, Q. Density-oriented versus Development-oriented Transit Investment: Decoding Metro Station Location Selection in Shenzhen. Transp. Policy 2016, 51, 93–102. [Google Scholar] [CrossRef]
- Yang, J.; Quan, J.; Yan, B.; He, C. Urban Rail Investment and Transit-oriented Development in Beijing: Can It Reach a Higher Potential? Transp. Res. Part A Policy Pract. 2016, 89, 140–150. [Google Scholar] [CrossRef]
- Cervero, R.; Landis, J. Twenty Years of the Bay Area Rapid Transit System: Land Use and Development Impacts. Transp. Res. Part A Policy Pract. 1997, 31, 309–333. [Google Scholar] [CrossRef]
- AlQuhtani, S.; Anjomani, A. Do Rail Transit Stations Affect the Population Density Changes Around Them? Sustainability 2021, 13, 3355. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, H.; Song, Y. Rail Transportation Lead Urban Form Change: A Case Study of Beijing. Urban Rail Transit 2017, 3, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tong, D.; Gao, J.; Chen, Y. The Reshaping of Land Development Density through Rail Transit: The Stories of Central Areas vs. Suburbs in Shenzhen, China. Cities 2019, 89, 35–45. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel Demand and the 3Ds: Density, Diversity, and Design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Cervero, R.; Murakami, J. Effects of Built Environments on Vehicle Miles Traveled: Evidence from 370 US Urbanized Areas. Environ. Plan. A 2010, 42, 400–418. [Google Scholar] [CrossRef]
- Lee, S.; Lee, B. The Influence of Urban Form on GHG Emissions in the US Household Sector. Energy Policy 2014, 68, 534–549. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, W.; Li, Y.; Liu, Q.; Li, C. Does the Built Environment Make a Difference? An Investigation of Household Vehicle Use in Zhongshan Metropolitan Area, China. Sustainability 2014, 6, 4910–4930. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, M.; Qiang, W.; Wu, K.; Wang, X. Urban Form, Shrinking Cities, and Residential Carbon Emissions: Evidence from Chinese City-regions. Appl. Energy 2020, 261, 114409. [Google Scholar] [CrossRef]
- Calvo, F.; Oña, J.d.; Arán, F. Impact of the Madrid Subway on Population Settlement and Land Use. Land Use Policy 2013, 31, 627–639. [Google Scholar] [CrossRef]
- Mayer, T.; Trevien, C. The Impact of Urban Public Transportation Evidence from the Paris Region. J. Urban Econ. 2017, 102, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Bothe, K.; Hansen, H.K.; Winther, L. Spatial Restructuring and Uneven Intra-urban Employment Growth in Metro-and Non-metro-served Areas in Copenhagen. J. Transp. Geogr. 2018, 70, 21–30. [Google Scholar] [CrossRef]
- Tao, Z.; Feng, X.; Li, K.; Shi, R. Impacts of Urban Rail Transit on City Growth: Evidence from China. Urban Rail Transit 2022, 8, 121–133. [Google Scholar] [CrossRef]
- Mazzarino, M. The Economics of the Greenhouse Effect: Evaluating the Climate Change Impact Due to the Transport Sector in Italy. Energy Policy 2000, 28, 957–966. [Google Scholar] [CrossRef]
- Ewing, R.; Hamidi, S.; Gallivan, F.; Nelson, A.C.; Grace, J.B. Structural Equation Models of VMT Growth in US Urbanised Areas. Urban Stud. 2014, 51, 3079–3096. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Lei, Y. Decomposition Analysis of Energy-related Carbon Emissions from the Transportation Sector in Beijing. Transp. Res. Part D Transp. Environ. 2016, 42, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Cai, B.; Ye, Z.; Wang, Z.; Zhang, W.; Zhou, P.; Chen, J. Changing Patterns and Determinants of Transportation Carbon Emissions in Chinese Cities. Energy 2019, 174, 562–575. [Google Scholar] [CrossRef]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.-H.; Klimont, Z. A Technology-based Global Inventory of Black and Organic Carbon Emissions from Combustion. J. Geophys. Res. Atmos. 2004, 109, D14. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- CEIC Data. CEIC Premium Database for China. 2021. Available online: https://info.ceicdata.com/en-products-china-premium-database (accessed on 1 June 2022).
- Baumgartner, H.; Homburg, C. Applications of structural equation modeling in marketing and consumer research: A review. Int. J. Res. Mark. 1996, 13, 139–161. [Google Scholar] [CrossRef] [Green Version]
- China City Greenhouse Gas Working Group (CCG). China City Greenhouse Gases Emissions Dataset (2015); China City Greenhouse Gas Working Group (CCG): Beijing, China, 2019. [Google Scholar]
- National Bureau of Statistics of People’s Republic of China. China Statistical Yearbook on Environment; National Bureau of Statistics of People’s Republic of China: Beijing, China, 2016.
- Ministry of Housing and Urban-Rural Development of People’s Republic of China. China Urban Construction Statistical Yearbook; China Statistics Press: Beijing, China, 2016.
- Oak Ridge National Laboratory. LandScan Population Grids. 2022. Available online: https://landscan.ornl.gov/ (accessed on 1 June 2022).
- China Association of Metros. 2015 Urban Rail Transit Annual Report. 2016. Available online: https://www.camet.org.cn/tjxx/3103 (accessed on 1 June 2022).
- Huo, H.; Zhang, Q.; He, K.; Yao, Z.; Wang, M. Vehicle-use Intensity in China: Current Status and Future Trend. Energy Policy 2012, 43, 6–16. [Google Scholar] [CrossRef]
- Chen, W.; Klaiber, H.A. Does Road Expansion Induce Traffic? An Evaluation of Vehicle-Kilometers Traveled in China. J. Environ. Econ. Manag. 2020, 104, 102387. [Google Scholar] [CrossRef]
- Veneri, P. Urban Polycentricity and the Costs of Commuting: Evidence from Italian Metropolitan Areas. Growth Change 2010, 41, 403–429. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. How Polycentric is Urban China and Why? A Case Study of 318 Cities. Landsc. Urban Plan. 2016, 151, 10–20. [Google Scholar] [CrossRef]
- Kline, R.B. Software Review: Software Programs for Structural Equation Modeling: Amos, EQS, and LISREL. J. Psychoeduc. Assess. 1998, 16, 343–364. [Google Scholar] [CrossRef]
- Fan, X.; Thompson, B.; Wang, L. Effects of Sample Size, Estimation Methods, and Model Specification on Structural Equation Modeling Fit Indexes. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 56–83. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, W.; Wang, X. Does Polycentric and Compact Development Alleviate Urban Traffic Congestion? A Case Study of 98 Chinese Cities. Cities 2019, 88, 100–111. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, D.; Zhao, Y.; Luo, X.; Yin, J. Incorporating Polycentric Development and Neighborhood Life-circle Planning for Reducing Driving in Beijing: Nonlinear and Threshold Analysis. Cities 2022, 121, 103488. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment: A Meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
Studies | Region | Study Period | Independent Variables | Dependent Variable | Sign |
---|---|---|---|---|---|
Substitution effects: urban rail transit & vehicle use | |||||
[5] | US | 2003 | Urban rail | Traffic congestion | − |
[6] | Germany | 2002–2011 | Urban rail, bus | Traffic volume, NO2 | − |
[7] | China | 2003–2013 | Urban rail | Automobile energy use | − |
[8] | China | 2013–2015 | Urban rail | CO concentration | − |
Mediating effects: urban rail transit & urban form | |||||
[13] | US | 1973–1993 | Urban rail | Polycentricity | + |
[14] | US | 2000–2014 | Urban rail | Population density | + |
[15] | China | 2000–2010 | Urban rail | Polycentricity, density | + |
[16] | China | 2008–2014 | Urban rail | Density | + |
Mediating effects: urban form & vehicle use | |||||
[17] | US | 1990–1991 | Density, diversity, design | Vehicle trips | − |
[18] | US | 2003 | Density | VMT | − |
[19] | US | 2000–2001 | Polycentricity, density | VMT, transportation CO2 | +/− |
[20] | China | 2000 | Density | Vehicle trips | − |
[21] | China | 2005–2015 | Polycentricity, compactness | Residential CO2 | +/− |
Mediating effects: urban rail transit & socio-demographics | |||||
[22] | Spain | 2000–2010 | Urban rail | Population | + |
[23] | France | 1970–2000 | Urban rail | Employment | + |
[24] | Denmark | 1992–2012 | Urban rail | Employment | + |
[25] | China | 2010–2019 | Urban rail | Population, GDP, employment | + |
Mediating effects: socio-demographics & vehicle use | |||||
[26] | Italy | 1980–1995 | GDP | Transportation CO2 | + |
[27] | US | 2000–2010 | Population, income | VMT | + |
[28] | China | 1995–2012 | GDP, population | Transportation CO2 | + |
[29] | China | 2005–2015 | GDP per capita, population | Transportation CO2 | + |
Variable Name | Variable Description | Obs | Mean | Std. Dev |
---|---|---|---|---|
R_CO2 | Carbon emissions from on-road vehicles (104 tonnes) | 90 | 3.04 × 102 | 3.69 × 102 |
VKT_PV | Vehicle kilometer traveled per vehicle | 90 | 5.23 × 10 | 5.03 × 10 |
VO | Vehicle ownership (thousand vehicles) | 90 | 9.62 × 105 | 9.94 × 105 |
GDP_PC | GDP per capita (RMB) | 90 | 6.18 × 104 | 2.85 × 104 |
MTR_DEN | Urban rail line density (km/km2) | 90 | 4.80 × 10 | 1.16 × 102 |
MPK_SHR | Urban rail passenger kilometers share | 90 | 1.99 × 10−2 | 7.65 × 10−2 |
POLYCENT | Number of urban centers | 90 | 2.78 | 2.13 |
POP_DEN | Urban population density (person/km2) | 90 | 8.05 | 2.58 |
POP | Urban population (thousand persons) | 90 | 2.36 × 102 | 3.63 × 102 |
Independent Variable | Total Effects | |
---|---|---|
Direct | Indirect | |
VKT_PV | 0.1502 | |
VO | 0.6764 | |
GDP_PC | 0.2257 | |
MTR_DEN | −0.0175 | |
MPK_SHR | −0.0644 | |
POLYCENT | 0.0820 | |
POP_DEN | −0.1814 | |
POP | 0.6415 | |
Summary statistics | ||
N | 90 | |
Chi-square | 12.993 | |
Degrees of freedom | 10 | |
p-value (>0.05) * | 0.224 | |
Comparative fit index (>0.900) | 0.995 | |
Normed fit index (>0.950) | 0.980 | |
Tucker-Lewis Index (>0.900) | 0.982 | |
RMSEA (≈0.05) | 0.058 |
To | From | Coefficient | SE. | |
---|---|---|---|---|
R_CO2 | < | VKT_PV | 0.1502 * | 0.0598 |
R_CO2 | < | VO | 0.6764 ** | 0.0691 |
VKT_PV | < | MPK_SHR | −0.4289 * | 0.2043 |
VKT_PV | < | POLYCENT | −0.3531 * | 0.1572 |
VKT_PV | < | POP_DEN | −1.2083 ** | 0.3204 |
VKT_PV | < | POP | 1.1706 ** | 0.3048 |
VO | < | POP | 0.6885 ** | 0.0698 |
VO | < | POLYCENT | 0.1997 * | 0.0987 |
MPK_SHR | < | MTR_DEN | 0.7237 ** | 0.0238 |
POLYCENT | < | MTR_DEN | 0.1595 ** | 0.0292 |
POP_DEN | < | MTR_DEN | 0.0329 * | 0.0131 |
GDP_PC | < | MTR_DEN | 0.0975 ** | 0.0192 |
POP | < | GDP_PC | 0.3518 * | 0.1536 |
Mediator | Mechanism | Emission Abatement | Emission Intensification | Net Emission Effects |
---|---|---|---|---|
MPK_SHR | Substitution | −0.0466 | −0.0466 | |
POP_DEN | Urban form | −0.0060 | −0.0060 | |
POLYCENT | Urban form | −0.0085 | 0.0216 | 0.0131 |
GDP_PC & POP | Socio-demographics | 0.0220 | 0.0220 | |
Total | −0.0611 | 0.0436 | −0.0175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, Y.; Zheng, J.; Nam, K.-M. Impacts of Urban Rail Transit on On-Road Carbon Emissions: A Structural Equation Modeling Approach. Atmosphere 2022, 13, 1783. https://doi.org/10.3390/atmos13111783
Ou Y, Zheng J, Nam K-M. Impacts of Urban Rail Transit on On-Road Carbon Emissions: A Structural Equation Modeling Approach. Atmosphere. 2022; 13(11):1783. https://doi.org/10.3390/atmos13111783
Chicago/Turabian StyleOu, Yifu, Ji Zheng, and Kyung-Min Nam. 2022. "Impacts of Urban Rail Transit on On-Road Carbon Emissions: A Structural Equation Modeling Approach" Atmosphere 13, no. 11: 1783. https://doi.org/10.3390/atmos13111783
APA StyleOu, Y., Zheng, J., & Nam, K. -M. (2022). Impacts of Urban Rail Transit on On-Road Carbon Emissions: A Structural Equation Modeling Approach. Atmosphere, 13(11), 1783. https://doi.org/10.3390/atmos13111783