Concentration, Source, and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons: A Pilot Study in the Xuanwei Lung Cancer Epidemic Area, Yunnan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Quantification of PAHs
2.3. Cancer Risk Estimates
2.4. Source Apportionment
3. Results
3.1. Mass Concentrations of PM2.5
3.2. Mass Concentrations of PAHs
4. Discussion
4.1. Distribution of PAHs
4.2. Source Assessment of PAHs
4.3. Distribution of BaPeq
4.4. Lung Cancer Risk Assessment
5. Perspectives
6. Conclusions
- The average indoor PM2.5 mass concentration in Xuanwei was 97.6 ± 9.8 μg/m3, and generally showed a pattern of being higher indoors than outdoors and higher in the daytime than in the nighttime.
- The concentration of total PAHs in the Xuanwei lung cancer epidemic area was 686 ± 520 ng/m3, significantly lower than in other cities of China.
- The concentrations of total PAHs, major carcinogenic compounds, and benzo[a]pyrene-based equivalent concentration (BaPeq) were significantly higher in the coal-using home than in the electricity-using home, indicating that indoor coal combustion may be the main source of PAH pollution in Xuanwei.
- The ILCR was 48.21 × 10−6 indoors for the coal-using home and 9.33 × 10−6 indoors for the electricity-using home, which is much higher than the international standard of 1 × 10−6.
- The indoor cancer risk for the coal-using home is higher than that for the electricity-using home and much higher than that of Chinese megacities such as Beijing and Tianjin. Long-term exposure to indoor coal-burning environments containing high levels of PAHs may be one of the main reasons for the high incidence of lung cancer in Xuanwei.
Author Contributions
Funding
Conflicts of Interest
References
- Ma, W.L.; Liu, L.Y.; Jia, H.L.; Yang, M.; Li, Y.F. PAHs in Chinese atmosphere Part I: Concentration, source and temperature dependence. Atmos. Environ. 2018, 173, 330–337. [Google Scholar] [CrossRef]
- Zhang, J.M.; Yang, L.X.; Ledoux, F.; Courcot, D.; Mellouki, A.; Gao, Y.; Jiang, P.; Li, Y.Y.; Wang, W.X. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in rural and suburban areas in Shandong and Henan Provinces during the 2016 Chinese New Year’s holiday. Environ. Pollut. 2019, 250, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.L.; Zhu, F.J.; Liu, L.Y.; Jia, H.L.; Yang, M.; Li, Y.F. PAHs in Chinese atmosphere Part II: Health risk assessment. Ecotoxicol. Environ. Saf. 2020, 200, 9. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.Q.; Wang, G.H.; Li, H. Spatial and seasonal variations of primary and secondary organic aerosols at urban areas and continental background site of China: Ambient levels, size distribution, and sources. Gondwana Res. 2022, 110, 319–329. [Google Scholar] [CrossRef]
- Dai, H.B.; Huang, G.Q.; Wang, J.J.; Zeng, H.B.; Zhou, F.Y. Prediction of air pollutant concentration based on one-dimensional multi-scale CNN-LSTM considering spatial-temporal characteristics: A case study of Xi’an, China. Atmosphere 2021, 12, 1626. [Google Scholar] [CrossRef]
- Dai, H.B.; Huang, G.Q.; Zeng, H.B.; Zhou, F.Y. PM2.5 volatility prediction by XGBoost-MLP based on GARCH models. J. Clean. Prod. 2022, 356, 131898. [Google Scholar] [CrossRef]
- Ho, K.F.; Chang, C.C.; Tian, L.W.; Chan, C.S.; Bandowe, B.A.M.; Lui, K.H.; Lee, K.Y.; Chuang, K.J.; Liu, C.Y.; Ning, Z.; et al. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro. Environ. Pollut. 2016, 218, 1262–1269. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Dong, F.Q.; Zhou, L.; Chen, Y.Z.; Yu, J.Y.; Luo, X.J.; Zhang, X.Y.; Lv, Z.Z.; Xia, X.; Xue, J.Y. Research Progress on Heterogeneous Reactions of Pollutant Gases on the Surface of Atmospheric Mineral Particulate Matter in China. Atmosphere 2022, 13, 1283. [Google Scholar] [CrossRef]
- Lv, J.; Xu, R.; Wu, G.P.; Zhang, Q.H.; Li, Y.M.; Wang, P.; Liao, C.Y.; Liu, J.Y.; Jiang, G.B.; Wei, F.S. Indoor and outdoor air pollution of polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, China. J. Environ. Monit. 2009, 11, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures. 2010. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfmdeid194584 (accessed on 21 January 2020).
- Mumford, J.L.; He, X.Z.; Chapman, R.S.; Cao, S.R.; Harris, D.B.; Li, X.M.; Xian, Y.L.; Jiang, W.Z.; Xu, C.W.; Chuang, J.C. Lung cancer and indoor air pollution in Xuan Wei, China. Science 1987, 235, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.B.; Sun, X.; Ren, H.Y.; Wan, X.; Huang, H.C.; Ma, X.Y.; Ning, B.F.; Zou, X.N.; Hu, W.J.; Yang, G.H. The mortality patterns of lung cancer between 1990 and 2013 in Xuanwei, China. Lung Cancer 2015, 90, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.Y.; Wang, J.; Hou, H.H.; Zhang, M.Q.; Wang, H.; Spiro, B.; Large, D.; Zhou, Y.P. Geochemistry of the C1coal of the latest Permian during mass extinction in Xuanwei, Yunnan. Acta Geol. Sin. 2015, 89, 163–179, (In Chinese with English abstract). [Google Scholar]
- Wang, J.; Shao, L.Y.; Wang, H.; Spiro, B.; Large, D.J. SHRIMP zircon U-Pb ages from coal beds across the PermianeTriassic boundary, eastern Yunnan, southwestern China. J. Palaeogeogr. 2018, 7, 117–129. [Google Scholar] [CrossRef]
- Yan, Z.M.; Shao, L.Y.; Glasspool, I.J.; Wang, J.; Wang, X.T.; Wang, H. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event. International J. Coal Geol. 2019, 207, 75–83. [Google Scholar] [CrossRef]
- Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Wu, G.; Wei, F.; Chapman, R.S.; Portengen, L.; Qing, L.; Vermeulen, R. Polycyclic Aromatic Hydrocarbon Exposure in Household Air Pollution from Solid Fuel Combustion among the Female Population of Xuanwei and Fuyuan Counties, China. Environ. Sci. Technol. 2014, 48, 14632–14641. [Google Scholar] [CrossRef] [Green Version]
- Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Tromp, P.; Wu, G.; Wei, F.; Xu, J.; Seow, W.J.; Chapman, R.S.; et al. Quartz in ash, and air in a high lung cancer incidence area in China. Environ. Pollut. 2017, 221, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Hao, X.; Liu, D.; Wang, Q.; Zhang, W.; Liu, P.; Zhang, R.; Yu, S.; Pan, R.; Wu, M.; et al. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion. Atmos. Res. 2016, 169, 17–23. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, S.; Hui, Z.; Xiao, K.; Peng, J.; Win, M.S.; Shang, Y.; Yonemochi, S.; Wang, Q. Magnetic, geochemical characterization and health risk assessment of road dust in Xuanwei and Fuyuan, China. Environ. Geochem. Health 2018, 40, 1541–1555. [Google Scholar] [CrossRef]
- Large, D.J.; Kelly, S.; Spiro, B.; Tian, L.W.; Shao, L.Y.; Finkelman, R.B.; Zhang, M.Q.; Somerfield, C.; Plint, S.; Ali, Y.; et al. Silica-volatile interaction and the geological cause of the Xuanwei lung cancer epidemic. Environ. Sci. Technol. 2009, 43, 9016–9021. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Ran, J.J.; Chen, L.C.; Costa, M.; Huang, Y.C.; Chen, X.; Tian, L.W. Bituminous coal combustion and Xuan Wei Lung cancer: A review of the epidemiology, intervention, carcinogens, and carcinogenesis. Arch. Toxicol. 2019, 93, 573–583. [Google Scholar] [CrossRef]
- Feng, X.L.; Shao, L.Y.; Xi, C.X.; Jones, T.; Zhang, D.; BeruBe, K. Particle-induced oxidative damage by indoor size-segregated particulate matter from coal-burning homes in the Xuanwei lung cancer epidemic area, Yunnan Province, China. Chemosphere 2020, 256, 127058. [Google Scholar] [CrossRef] [PubMed]
- He, X.Z.; Chen, W.; Liu, Z.Y.; Chapman, R.S. An epidemiological study of lung cancer in Xuan Wei County, China: Current progress. Case-control study on lung cancer and cooking fuel. Environ. Health Perspect. 1991, 94, 9–13. [Google Scholar] [PubMed]
- Tian, L.W.; Dai, S.F.; Wang, J.F.; Huang, Y.C.; Ho, S.C.; Zhou, Y.P.; Lucas, D.; Koshland, C.P. Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: A retrospective cohort study. BMC Public Health 2008, 8, 398. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.Y.; Hu, Y.; Wang, J.; Hou, C.; Yang, Y.; Wu, M. Particle-induced oxidative damage of indoor PM10 from coal burning homes in the lung cancer area of Xuan Wei, China. Atmos. Environ. 2013, 77, 959–967. [Google Scholar] [CrossRef]
- Vermeulen, R.; Downward, G.S.; Zhang, J.M.; Hu, W.; Portengen, L.; Bassig, B.A.; Hammond, S.K.; Wong, J.Y.Y.; Li, J.H.; Reiss, B.; et al. Constituents of household air pollution and risk of lung cancer among never-smoking women in Xuanwei and Fuyuan, China. Environ. Health Perspect. 2019, 127, 12. [Google Scholar] [CrossRef]
- Yang, K.; Huang, Y.; Zhao, G.; Lei, Y.; Wang, K. Expression of PAH-DNA adducts in lung tissues of Xuanwei female lung cancer patients. Zhongguo Fei Ai Za Zhi Chin. J. Lung Cancer 2010, 13, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.Y.; Vermeulen, R.; Dai, Y.; Hu, W.; Martin, W.K.; Warren, S.H.; Liberatore, H.K.; Ren, D.; Duan, H.; Niu, Y.; et al. Elevated urinary mutagenicity among those exposed to bituminous coal combustion emissions or diesel engine exhaust. Environ. Mol. Mutagen. 2021, 62, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; He, X.Z.; Shen, M.; Tian, L.W.; Liu, L.Z.; Lai, H.; Chen, W.; Berndt, S.I.; Hosgood, H.D.; Lee, K.M.; et al. Variation in lung cancer risk by smoky coal subtype in Xuanwei, China. Int. J. Cancer 2008, 123, 2164–2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, K.H.; Bandowe, B.A.M.; Tian, L.W.; Chan, C.S.; Cao, J.J.; Ning, Z.; Lee, S.C.; Ho, K.F. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. Chemosphere 2017, 169, 660–668. [Google Scholar] [CrossRef]
- Liu, X.Y.; Liu, L.Q.; Zou, X.N.; Ma, X.Y.; Ning, B.F.; Ning, Y.F.; Wan, X. Epidemiological features of lung cancer mortality between 1990 and 2016 in Xuanwei city, Yunnan province. Acta Acad. Med. Sin. 2019, 41, 338–343, (In Chinese with English abstract). [Google Scholar]
- Liu, W.J.; Xu, Y.S.; Zhao, Y.Z.; Liu, Q.Y.; Yu, S.Y.; Liu, Y.; Wang, X.; Liu, Y.; Tao, S.; Liu, W.X. Occurrence, source, and risk assessment of atmospheric parent polycyclic aromatic hydrocarbons in the coastal cities of the Bohai and Yellow Seas, China. Environ. Pollut. 2019, 254, 10. [Google Scholar] [CrossRef] [PubMed]
- Hoddinott, K.B.; Lee, A.P. The use of environmental risk assessment methodologies for an indoor air quality investigation. Chemosphere 2000, 41, 77–84. [Google Scholar] [CrossRef]
- Kulshrestha, M.J.; Singh, R.; Ojha, V.N. Trends and source attribution of PAHs in fine particulate matter at an urban and a rural site in Indo-Gangetic plain. Urban Clim. 2019, 29, 14. [Google Scholar] [CrossRef]
- Alsbou, E.; Zaitoun, M.A.; Alasoufi, A.M.; Al Shra’ah, A. Concentration and Source Assessment of Polycyclic Aromatic Hydrocarbons in the Street Soil of Ma’an City, Jordan. Arch. Environ. Contam. Toxicol. 2019, 77, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, E. Analysis for airborne particulate hydrocarbons: Their relative proportions as affected by different types of pollution. Natl. Cancer Inst. Monogr. 1962, 9, 201–220. [Google Scholar]
- Liu, Y.J.; Zhu, L.Z.; Shen, X.Y. Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ. Sci. Technol. 2001, 35, 840–844. [Google Scholar] [CrossRef]
- Yin, H.; Xu, L.Y. Comparative study of PM10/PM2.5-bound PAHs in downtown Beijing, China: Concentrations, sources, and health risks. J. Clean. Prod. 2018, 177, 674–683. [Google Scholar] [CrossRef]
- Li, C.S.; Ro, Y.S. Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmos. Environ. 2000, 34, 611–620. [Google Scholar] [CrossRef]
- Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Wu, G.; Wei, F.; Xu, J.; Seow, W.J.; Brunekreef, B.; Chapman, R.S.; et al. Outdoor, indoor, and personal black carbon exposure from cookstoves burning solid fuels. Indoor Air 2016, 26, 784–795. [Google Scholar] [CrossRef] [Green Version]
- Pankow, J.F. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 1987, 21, 2275–2283. [Google Scholar]
- Crawford, F.G.; Mayer, J.; Santella, R.M.; Cooper, T.B.; Ottman, R.; Tsai, W.Y.; Simon-Cereijido, G.; Wang, M.; Tang, D.; Perera, F.P. Biomarkers of environmental tobacco smoke in preschool children and their mothers. J. Natl. Cancer Inst. 1994, 86, 1398–1402. [Google Scholar] [CrossRef]
- Wang, X.L.; Tao, S.; Xu, F.L.; Dawson, R.W.; Cao, J.; Li, B.G.; Fang, J.Y. Modeling the fate of benzo a pyrene in the wastewater-irrigated areas of Tianjin with a fugacity model. J. Environ. Qual. 2002, 31, 896–903. [Google Scholar] [PubMed]
- Wang, Y.H.; Hu, L.F.; Lu, G.H. Health risk analysis of atmospheric polycyclic aromatic hydrocarbons in big cities of China. Ecotoxicology 2014, 23, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Deziel, N.C.; Wei, W.Q.; Abnet, C.C.; Qiao, Y.L.; Sunderland, D.; Ren, J.S.; Schantz, M.M.; Zhang, Y.; Strickland, P.T.; Abubaker, S.; et al. A multi-day environmental study of polycyclic aromatic hydrocarbon exposure in a high-risk region for esophageal cancer in China. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Asante-Duah, K. Public Health Risk Assessment for Human Exposure to Chemicals; Kluwer: London, UK, 2002. [Google Scholar]
- Wu, Z.X.; Hu, T.F.; Hu, W.; Shao, L.Y.; Sun, Y.Z.; Xue, F.L.; Niu, H.Y. Evolution in physicochemical properties of fine particles emitted from residential coal combustion based on chamber experiment. Gondwana Res. 2022, 110, 252–263. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, G.; Huang, Y.; Zhang, Y.; Han, Y.; Wang, R.; Shen, H.; Su, S.; Lin, N.; Zhu, D.; et al. Household air pollution and personal exposure risk of polycyclic aromatic hydrocarbons among rural residents in Shanxi, China. Indoor Air 2016, 26, 246–258. [Google Scholar] [CrossRef]
- Xia, Z.H.; Duan, X.L.; Tao, S.; Qiu, W.X.; Liu, D.; Wang, Y.L.; Wei, S.Y.; Wang, B.; Jiang, Q.J.; Lu, B.; et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Environ. Pollut. 2013, 173, 150–156. [Google Scholar] [CrossRef]
- Liu, W.X.; Dou, H.; Wei, Z.C.; Chang, B.; Qiu, W.X.; Liu, Y.; Tao, S. Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China. Sci. Total Environ. 2009, 407, 1436–1446. [Google Scholar] [CrossRef]
- Xu, L.Y.; Shu, X. Aggregate human health risk assessment from dust of daily life in the urban environment of Beijing. Risk Anal. 2014, 34, 670–682. [Google Scholar] [CrossRef]
- Bai, Z.P.; Hu, Y.D.; Yu, H.; Wu, N.; You, Y. Quantitative Health Risk Assessment of Inhalation Exposure to Polycyclic Aromatic Hydrocarbons on Citizens in Tianjin, China. Bull. Environ. Contam. Toxicol. 2009, 83, 151–154. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y.; Wang, W.H.; Li, H.; Wang, X.M.; Li, Y.W.; Li, W.J.; Jones, T.P.; Zhang, D.Z. Air quality improvement in response to intensified control strategies in Beijing during 2013–2019. Sci. Total Environ. 2020, 744, 140776. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Sampling Date | Sampling Site | Indoor/Outdoor | Day/Night | Average Temperature (°C) | Relative Humidity (%) | Average Pressure (kpa) |
---|---|---|---|---|---|---|---|
XW01 | 2019.02.28 | coal-using home | Indoor | Night | 17.4 | 63.2 | 900.6 |
XW02 | 2019.02.28 | Outdoor | Night | 16.8 | 67.6 | 799.9 | |
XW03 | 2019.03.01 | Indoor | Day | 14 | 60.4 | 801.2 | |
XW04 | 2019.03.01 | Outdoor | Day | 11.8 | 65.9 | 800.5 | |
XW05 | 2019.03.02 | Indoor | Night | 16.9 | 43.3 | 799.7 | |
XW06 | 2019.03.02 | Outdoor | Night | 6.5 | 54.2 | 801.5 | |
XW07 | 2019.03.03 | Indoor | Day | 12.4 | 50.8 | 802.2 | |
XW08 | 2019.03.03 | Outdoor | Day | 5.4 | 56.1 | 802.2 | |
XW09 | 2019.03.03 | Indoor | Night | 13.3 | 62.4 | 798.6 | |
XW10 | 2019.03.03 | Outdoor | Night | 20.6 | 25.5 | 797.6 | |
XW11 | 2019.03.04 | Indoor | Day | 13.5 | 58 | 798.5 | |
XW12 | 2019.03.04 | Outdoor | Day | 12.3 | 43.3 | 797.3 | |
XW13 | 2019.03.04 | Indoor | Night | 16.9 | 57.3 | 796.2 | |
XW14 | 2019.03.04 | Outdoor | Night | 18.4 | 34.7 | 795 | |
XW15 | 2019.03.05 | electricity-using home | Indoor | Day | 14.9 | 49.2 | 799.2 |
XW16 | 2019.03.05 | Outdoor | Day | 16.3 | 43.1 | 798.5 | |
XW17 | 2019.03.05 | Indoor | Night | 15.6 | 54.3 | 802 | |
XW18 | 2019.03.05 | Outdoor | Night | 10.6 | 64.5 | 800.9 | |
XW19 | 2019.03.06 | Indoor | Day | 13.5 | 55 | 803.8 | |
XW20 | 2019.03.06 | Outdoor | Day | 9.2 | 81.7 | 799.4 | |
XW21 | 2019.03.06 | Indoor | Night | 12.9 | 62.6 | 801.5 | |
XW22 | 2019.03.06 | Outdoor | Night | 8.8 | 80.8 | 799.5 |
Species | BaP-Based TEF |
---|---|
FLT | 0.001 |
PYR | 0.001 |
BaA | 0.1 |
CHR | 0.1 |
BbF | 0.1 |
BkF | 0.1 |
BaP | 1 |
IcP | 0.1 |
BgP | 0.01 |
Factor | Unit | Value |
---|---|---|
IR | m3/h | 0.83 |
EF | h | 153,300 |
SF | mg/kg.day | 3.1 |
BW | kg | 70 |
AT | day | 25,550 |
CF | - | 10−6 |
Samples | XW07 | XW08 | XW10 | XW13 | XW15 | XW17 | XW20 | XW22 | |
---|---|---|---|---|---|---|---|---|---|
Species | |||||||||
FLT | 71 | 78 | 34 | 30 | 32 | 15 | 27 | 20 | |
PYR | 117 | 96 | 43 | 34 | 43 | 20 | 34 | 27 | |
BaA | 794 | 392 | 100 | 367 | 106 | 32 | 138 | 73 | |
CHR | 140 | 79 | 19 | 63 | 22 | 9 | 29 | 12 | |
BbF | 210 | 188 | 51 | 182 | 64 | 38 | 63 | 49 | |
BkF | 70 | 63 | 33 | 49 | 34 | 17 | 12 | 10 | |
BaP | 142 | 88 | 25 | 87 | 33 | 14 | 32 | 23 | |
IcP | 112 | 95 | 24 | 80 | 28 | 16 | 27 | 23 | |
BgP | 106 | 84 | 29 | 67 | 38 | 22 | 38 | 29 | |
∑PAHs | 1762 | 1162 | 356 | 959 | 399 | 185 | 399 | 265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Shao, L.; Jones, T.P.; Feng, X.; Schnelle-Kreis, J.; Cao, Y.; BéruBé, K.A. Concentration, Source, and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons: A Pilot Study in the Xuanwei Lung Cancer Epidemic Area, Yunnan Province, China. Atmosphere 2022, 13, 1732. https://doi.org/10.3390/atmos13101732
Zhang M, Shao L, Jones TP, Feng X, Schnelle-Kreis J, Cao Y, BéruBé KA. Concentration, Source, and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons: A Pilot Study in the Xuanwei Lung Cancer Epidemic Area, Yunnan Province, China. Atmosphere. 2022; 13(10):1732. https://doi.org/10.3390/atmos13101732
Chicago/Turabian StyleZhang, Mengyuan, Longyi Shao, Timothy P. Jones, Xiaolei Feng, Jürgen Schnelle-Kreis, Yaxin Cao, and Kelly A. BéruBé. 2022. "Concentration, Source, and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons: A Pilot Study in the Xuanwei Lung Cancer Epidemic Area, Yunnan Province, China" Atmosphere 13, no. 10: 1732. https://doi.org/10.3390/atmos13101732
APA StyleZhang, M., Shao, L., Jones, T. P., Feng, X., Schnelle-Kreis, J., Cao, Y., & BéruBé, K. A. (2022). Concentration, Source, and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons: A Pilot Study in the Xuanwei Lung Cancer Epidemic Area, Yunnan Province, China. Atmosphere, 13(10), 1732. https://doi.org/10.3390/atmos13101732