Impact of Cloud Condensation Nuclei Reduction on Cloud Characteristics and Solar Radiation during COVID-19 Lockdown 2020 in Moscow
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Number Concentrations of Cloud Droplets
3.2. Observed and Simulated First Aerosol Indirect Effect
3.3. Global Irradiance at Ground
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marinello, S.; Butturi, M.A.; Gamberini, R. How changes in human activities during the lockdown impacted air quality parameters: A review. Environ. Prog. Sustain. Energy 2021, 40, e13672. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef]
- Liu, Q.; Harris, J.T.; Chiu, L.S.; Sun, D.; Houser, P.R.; Yu, M.; Yang, C. Spatiotemporal impacts of COVID-19 on air pollution in California, USA. Sci. Total Environ. 2021, 750, 141592. [Google Scholar] [CrossRef] [PubMed]
- Briz-Redón, Á.; Belenguer-Sapiña, C.; Serrano-Aroca, Á. Changes in air pollution during COVID-19 lockdown in Spain: A multi-city study. J. Environ. Sci. 2021, 101, 16–26. [Google Scholar] [CrossRef]
- Cameletti, M. The effect of Corona Virus lockdown on air pollution: Evidence from the city of Brescia in Lombardia Region (Italy). Atmos. Environ. 2020, 239, 117794. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; De Rose, C.; Abba, A.; Baldi, M.; Bertanza, G.; Pedrazzani, R.; Sorlini, S.; Miino, M.C. Analysis of lockdown for CoViD-19 impact on NO2 in London, Milan and Paris: What lesson can be learnt? Process Saf. Environ. Prot. 2021, 146, 952–960. [Google Scholar] [CrossRef]
- Chubarova, N.E.; Androsova, E.E.; Lezina, E.A. The dynamics of the atmospheric pollutants during the COVID-19 pandemic 2020 and their relationship with meteorological conditions in Moscow. Geogr. Environ. Sustain. 2021, 14, 168–182. [Google Scholar] [CrossRef]
- Ginzburg, A.S.; Semenov, V.A.; Semutnikova, E.G.; Aleshina, M.A.; Zakharova, P.V.; Lezina, E.A. Impact of COVID-19 Lockdown on Air Quality in Moscow. Dokl. Earth Sci. 2020, 495, 862–866. [Google Scholar] [CrossRef]
- Yushin, N.; Chaligava, O.; Zinicovscaia, I.; Vergel, K.; Grozdov, D. Mosses as Bioindicators of Heavy Metal Air Pollution in the Lockdown Period Adopted to Cope with the COVID-19 Pandemic. Atmosphere 2020, 11, 1194. [Google Scholar] [CrossRef]
- Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- Chowdhuri, I.; Pal, S.C.; Saha, A.; Chakrabortty, R.; Ghosh, M.; Roy, P. Significant decrease of lightning activities during COVID-19 lockdown period over Kolkata megacity in India. Sci. Total Environ. 2020, 747, 141321. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Invernón, F.J.; Huntrieser, H.; Gordillo-Vázquez, F.; Soler, S. Influence of the COVID-19 lockdown on lightning activity in the Po Valley. Geophys. Res. Lett. 2021, 263, 105808. [Google Scholar] [CrossRef]
- Latha, R.; Murthy, B.S.; Sandeepan, B.S.; Bhanage, V.; Rathod, A.; Tiwari, A.; Beig, G.; Singh, S. Propagation of cloud base to higher levels during Covid-19-Lockdown. Sci. Total Environ. 2021, 759, 144299. [Google Scholar] [CrossRef]
- Khatri, P.; Hayasaka, T.; Holben, R.; Tripathi, S.N.; Misra, P.; Patra, P.K.; Hayashida, S.; Dumka, U.C. Aerosol loading and radiation budget perturbations in densely populated and highly polluted Indo-Gangetic Plain by COVID-19: Influences on cloud properties and air temperature. Geophys. Res. Lett. 2021, 48, e2021GL093796. [Google Scholar] [CrossRef]
- Diamond, M.S.; Wood, R. Limited regional aerosol and cloud microphysical changes despite unprecedented decline in nitrogen oxide pollution during the February 2020 COVID-19 shutdown in China. Geophys. Res. Lett. 2020, 47, e2020GL088913. [Google Scholar] [CrossRef]
- Reifenberg, S.F.; Martin, A.; Kohl, M.; Hamryszczak, Z.; Tadic, I.; Röder, L.; Crowley, D.J.; Fischer, H.; Kaiser, K.; Schneider, J.; et al. Impact of reduced emissions on direct and indirect aerosol radiative forcing during COVID–19 lockdown in Europe. Atmos. Chem. Phys. Discuss. 2021, 1–23. [Google Scholar] [CrossRef]
- Shinozuka, Y.; Clarke, A.D.; Nenes, A.; Jefferson, A.; Wood, R.; McNaughton, C.S.; Ström, J.; Tunved, P.; Redemann, J.; Thornhill, K.L.; et al. The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: Indications of underlying aerosol processes and implications for satellite-based CCN estimates. Atmos. Chem. Phys. 2015, 15, 7585–7604. [Google Scholar] [CrossRef]
- McCoy, D.T.; Bender, F.M.; Mohrmann, J.K.C.; Hartmann, D.L.; Wood, R.; Grosvenor, D.P. The global aerosol-cloud first indirect effect estimated using MODIS, MERRA, and AeroCom. J. Geophys. Res. Atmos. 2017, 122, 1779–1796. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Rosenfeld, D.; Li, Z. Under What Conditions Can We Trust Retrieved Cloud Drop Concentrations in Broken Marine Stratocumulus? J. Geophys. Res. Atmos. 2018, 123, 8754–8767. [Google Scholar] [CrossRef] [Green Version]
- Brandau, C.L.; Russchenberg, H.W.J.; Knap, W.H. Evaluation of ground-based remotely sensed liquid water cloud properties using shortwave radiation measurements. Atmos. Res. 2010, 96, 366–377. [Google Scholar] [CrossRef]
- Merk, D.; Deneke, H.; Pospichal, B.; Seifert, P. Investigation of the adiabatic assumption for estimating cloud micro-and macrophysical properties from satellite and ground observations. Atmos. Chem. Phys. 2016, 16, 933–952. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Zheng, Y.; Hashimshoni, E.; Pöhlker, M.; Jefferson, A.; Pöhlker, C.; Yu, X.; Zhu, Y.; Liu, G.; Yue, Z.; et al. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proc. Natl. Acad. Sci. USA 2016, 113, 5828–5834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boers, R.; Acarreta, J.R.; Gras, J.L. Satellite monitoring of the first indirect aerosol effect: Retrieval of the droplet concentration of water clouds. J. Geophys. Res. Atmos. 2006, 111, D22. [Google Scholar] [CrossRef] [Green Version]
- McComiskey, A.; Feingold, G.; Frisch, A.S.; Turner, D.D.; Miller, M.A.; Chiu, J.C.; Min, Q.; Ogern, J.A. An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res. Atmos. 2009, 114, D09203. [Google Scholar] [CrossRef] [Green Version]
- Grandey, B.S.; Stier, P. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies. Atmos. Chem. Phys. 2010, 10, 11459–11470. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2016, 55, 502–525. [Google Scholar] [CrossRef]
- King, M.D.; Tsay, S.C.; Platnick, S.E.; Wang, M.; Liou, K.N. Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase. MODIS Algorithm Theoretical Basis Document. 1997. Available online: https://cimss.ssec.wisc.edu/dbs/China2011/Day2/Lectures/MOD06OD_Algorithm_Theoretical_Basis_Document.pdf (accessed on 11 August 2022).
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Arnold, G.T.; McGill, M.; Ackerman, S.A.; Baum, B.A.; Yang, P. Multilayer Cloud Detection in the MODIS Collection 5 Cloud Product. Hyperspectral Imaging Sound. Environ. 2007, JWA15. [Google Scholar] [CrossRef]
- Marchant, B.; Platnick, S.; Meyer, K.; Arnold, G.T.; Riedi, J. MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP. Atmos. Meas. Tech. 2016, 9, 1587–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.C.; Kaufman, Y.J. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res.Atmos. 2003, 108, D13. [Google Scholar] [CrossRef]
- Quaas, J.; Boucher, O.; Lohmann, U. Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmos. Chem. Phys. 2006, 6, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Brenguier, J.L.; Pawlowska, H.; Schüller, L.; Preusker, R.; Fischer, J.; Fouquart, Y. Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci. 2000, 57, 803–821. [Google Scholar] [CrossRef]
- Liang, L.; Di Girolamo, L.; Platnick, S. View-angle consistency in reflectance, optical thickness and spherical albedo of marine water clouds over the northeastern Pacific through MISR-MODIS fusion. Geophys. Res. Lett. 2009, 36, L09811. [Google Scholar] [CrossRef] [Green Version]
- Bennartz, R.; Rausch, J. Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations. Atmos. Chem. Phys. 2017, 17, 9815–9836. [Google Scholar] [CrossRef] [Green Version]
- Gryspeerdt, E.; McCoy, D.T.; Crosbie, E.; Moore, R.H.; Nott, G.J.; Ziemba, L. The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data. Atmos. Meas. Tech. 2022, 15, 3875–3892. [Google Scholar] [CrossRef]
- Kourtidis, K.; Stathopoulos, S.; Georgoulias, A.K.; Alexandri, G.; Rapsomanikis, S. A study of the impact of synoptic weather conditions and water vapor on aerosol–cloud relationships over major urban clusters of China. Atmos. Chem. Phys. 2015, 15, 10955–10964. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Duan, S.; He, Q.; Chen, Y.; Zhang, H.; Cheng, N.; Li, J. The variability of warm cloud droplet radius induced by aerosols and water vapor in Shanghai from MODIS observations. Atmos. Res. 2021, 253, 105470. [Google Scholar] [CrossRef]
- Bai, J.; Lou, Y.; Zhang, W.; Zhou, Y.; Zhang, Z.; Shi, C. Assessment and calibration of MODIS precipitable water vapor products based on GPS network over China. Atmos. Res. 2021, 254, 105504. [Google Scholar] [CrossRef]
- Khaniani, A.S.; Nikraftar, Z.; Zakeri, S. Evaluation of MODIS Near-IR water vapor product over Iran using ground-based GPS measurements. Atmos. Res. 2020, 231, 104657. [Google Scholar] [CrossRef]
- Quaas, J.; Arola, A.; Cairns, B.; Christensen, M.; Deneke, H.; Ekman, A.M.; Feingold, G.; Fridlind, A.; Gryspeerdt, E.; Hasekamp, O.; et al. Constraining the Twomey effect from satellite observations: Issues and prespectives. Atmos. Chem. Phys. 2020, 20, 15079–15099. [Google Scholar] [CrossRef]
- Zinner, T.; Mayer, B. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. J. Geophys. Res. Atmos. 2006, 111, D14209. [Google Scholar] [CrossRef] [Green Version]
- Painemal, D.; Chang, F.L.; Ferrare, R.; Burton, S.; Li, Z.; Clayton, M. Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations. Atmos. Chem. Phys. 2020, 20, 7167–7177. [Google Scholar] [CrossRef]
- Grosvenor, D.P.; Sourdeval, O.; Zuidema, P.; Ackerman, A.; Alexandrov, M.D.; Bennartz, R.; Boers, R.; Cairns, B.; Chiu, J.C.; Christensen, M.; et al. Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Rev. Geophys. 2018, 56, 409–453. [Google Scholar] [CrossRef]
- Chubarova, N.Y.; Zhdanova, Y.Y.; Androsova, Y.Y.; Kirsanov, A.A.; Shatunova, M.V.; Khlestova, Y.O.; Volpert, E.V.; Poliukhov, A.A.; Eremina, I.D.; Vlasov, D.V.; et al. The Aerosol Pollution of Cities and Its Effects on the Weather Forecast, Regional Climate and Geochemical Processes; MAKS Press Ltd.: Moscow, Russia, 2020. (In Russian) [Google Scholar]
- Kuznetsova, I.N.; Shalygina, I.Y.; Nakhaev, M.I.; Glazkova, A.A.; Zakharova, P.V.; Lezina, Y.A.; Zvyagintsev, A.M. Unfavorable for air quality meteorological factors. Proc. Hydrometcentre Russ. 2014, 351, 154–172. (In Russian) [Google Scholar]
- George, R.C.; Wood, R. Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean. Atmos. Chem. Phys. 2010, 10, 4047–4063. [Google Scholar] [CrossRef] [Green Version]
- Reutter, P.; Su, H.; Trentmann, J.; Simmel, M.; Rose, D.; Gunthe, S.S.; Wernli, H.; Andreae, M.O.; Pöschl, U. Aerosol-and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys. 2009, 9, 7067–7080. [Google Scholar] [CrossRef] [Green Version]
- Rinke, A.; Segger, B.; Crewell, S.; Maturilli, M.; Naakka, T.; Nygard, T.; Vihma, T.; Alshawaf, F.; Dick, G.; Wickert, J.; et al. Trends of vertically integrated water vapor over the Arctic during 1979–2016: Consistent moistening all over? J. Clim. 2019, 32, 6097–6116. [Google Scholar] [CrossRef]
- Crewell, S.; Ebell, K.; Konjari, P.; Mech, M.; Nomokonova, T.; Radovan, A.; Strack, D.; Triana-Gomez, A.M.; Noöl, S.; Scarlat, R.; et al. A systematic assessment of water vapor products in the Arctic: From instantaneous measurements to monthly means. Atmos. Meas. Tech. 2021, 14, 4829–4856. [Google Scholar] [CrossRef]
- Kratz, D.P.; Gupta, S.K.; Wilber, A.C.; Sothcott, V.E. Validation of the CERES Adition-4A Surface-Only Flux Algorithms. J. Appl. Meteorol. Climatol. 2020, 59, 281–295. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kratz, D.P.; Stackhouse, P.W.; Wilber, A.C. The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies; NASA Technology Paper TP-2001-211272; Langley Research Center: Hampton, VA, USA, 2001; pp. 1–31.
- Yan, H.; Huang, J.; Minnis, P.; Wang, T.; Bi, J. Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau. Remote Sens. Environ. 2011, 115, 1489–1500. [Google Scholar] [CrossRef] [Green Version]
- Jia, A.; Jiang, B.; Liang, S.; Zhang, X.; Ma, H. Validation and spatiotemporal analysis of CERES surface net radiation product. Remote Sens. 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Rivin, G.S.; Rozinkina, I.A.; Vil’fand, R.M.; Kiktev, D.B.; Tudrii, K.O.; Blinov, D.V.; Varentsov, M.I.; Zakharchenko, D.I.; Samsonov, T.E.; Repina, I.A.; et al. Development of the High-resolution Operational System for Numerical Prediction of Weather and Severe Weather Events for the Moscow Region. Russ. Meteorol. Hydrol. 2020, 45, 455–465. [Google Scholar] [CrossRef]
- Seifert, A.; Beheng, K.D. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys. 2006, 92, 45–66. [Google Scholar] [CrossRef]
- Ritter, B.; Geleyn, J.F. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Weather Rev. 1992, 120, 303–325. [Google Scholar] [CrossRef]
- Muskatel, H.; Blahak, U.; Khain, P.; Levi, Y.; Fu, Q. Parametrizations of Liquid and Ice Clouds’ Optical Properties in Operational Numerical Weather Prediction Models. Atmosphere 2021, 12, 89. [Google Scholar] [CrossRef]
- Semutnikova, E.G.; Kudryashova, Y.S.; Zhevachevsky, I.M.; Alekseev, D.A.; Zakharova, P.V.; Kravtcova, E.S.; Zhalnina, O.N.; Lyzhnikov, O.G.; Emelyanov, P.V.; Sidorenko, S.N.; et al. The ecologization of urban economy and transport system in Moscow. In The Report on the State of Moscow Environment in 2020; Kulbachevsky, A.O., Ed.; Department of Nature Management and Environmental Protection of the City of Moscow: Moscow, Russia, 2021; pp. 162–206. (In Russian) [Google Scholar]
- Guevara, M.; Jorba, O.; Soret, A.; Petetin, H.; Bowdalo, D.; Serradell, K.; Tena, C.; van der Gon, H.D.; Kuenen, J.; Peuch, V.-H.; et al. Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns. Atmos. Chem. Phys. 2021, 21, 773–779. [Google Scholar] [CrossRef]
- Li, J.; Jian, B.; Huang, J.; Hu, Y.; Zhao, C.; Kawamoto, K.; Liao, S.; Wu, M. Long-term variation of cloud droplet number concentrations from space-based Lidar. Remote Sens. Environ. 2018, 213, 144–161. [Google Scholar] [CrossRef]
- Austin, P.H.; Baker, M.B.; Blyth, A.M.; Jensen, J.B. Small-scale variability in warm continental cumulus clouds. J. Atmos. Sci. 1985, 42, 1123–1138. [Google Scholar] [CrossRef]
- Paluch, I.R.; Knight, C.A. Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci. 1984, 41, 1801–1815. [Google Scholar] [CrossRef]
- Sassen, K.; Mace, G.G.; Wang, Z.; Poellot, M.R.; Sekelsky, S.M.; McIntosh, R.E. Continental Stratus Clouds: A case Study Using Coordinated Remote Sensing and Aircraft Measurements. J. Atmos. Sci. 1999, 56, 2345–2358. [Google Scholar] [CrossRef]
- Rausch, J.; Meyer, K.; Bennartz, R.; Platnick, S. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS collections 5.1 and 6 over global oceans. Atmos. Meas. Tech. 2017, 10, 2105–2116. [Google Scholar] [CrossRef] [Green Version]
- Putaud, J.P.; Cavalli, F.; Martins dos Santos, S.; Dell’Acqua, A. Long-term trends in aerosol optical characteristics in the Po Valley, Italy. Atmos. Chem. Phys. 2014, 14, 9129–9136. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, C.B.; Foltescu, V.; De Leeuw, F. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wang, T. Ten years of aerosol effects on single-layer overcast clouds over the US Southern Great Plains and the China Loess Plateau. Adv. Meteorol. 2020, 2020, 6719160. [Google Scholar] [CrossRef]
- Christensen, M.W.; Jones, W.K.; Stier, P. Aerosols enhance cloud lifetime and brightness along the stratus-to-cumulus transition. Proc. Natl. Acad. Sci. USA 2020, 117, 17591–17598. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z. First surface-based estimation of the aerosol indirect effect over a site in southeastern China. Adv. Atmos. Sci. 2018, 35, 169–181. [Google Scholar] [CrossRef]
- Gubanova, D.P.; Elansky, N.F.; Skorokhod, A.I.; Kuderina, T.M.; Iordansky, M.A.; Sadovskaya, N.V.; Anikin, P.P. Physical and chemical properties of atmospheric aerosols in Moscow and its suburb for climate assessments. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012019. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; Andrade, M.d.F.; Pavlovic, R.; Garland, R.M.; Massague, J.; Kong, S.; et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ. Int. 2021, 157, 106818. [Google Scholar] [CrossRef]
- Su, T.; Li, Z.; Li, C.; Li, J.; Han, W.; Shen, C.; Tan, W.; Wei, J.; Guo, J. The significant impact of aerosol vertical structure on lower atmosphere stability and its critical role in aerosol-planetary boundary layer (PBL) interactions. Atmos. Chem. Phys. 2020, 20, 3713–3724. [Google Scholar] [CrossRef] [Green Version]
- Nomokonova, T.; Ebell, K.; Löhnert, U.; Maturilli, M.; Ritter, C. The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund. Atmos. Chem. Phys. 2020, 20, 5157–5173. [Google Scholar] [CrossRef]
- Dipu, S.; Quaas, J.; Wolke, R.; Stoll, J.; Mühlbauer, A.; Sourdeval, O.; Salzmann, M.; Heinold, B.; Tegen, I. Implementation of aerosol–cloud interactions in the regional atmosphere–aerosol model COSMO-MUSCAT (5.0) and evaluation using satellite data. Geosci. Model Dev. 2017, 10, 2231–2246. [Google Scholar] [CrossRef] [Green Version]
- Köhler, F.; Görsdorf, U. Towards 3D prediction of supercooled liquid water for aircraft icing: Modifications of the microphysics in COSMO-EU. Meteorol. Z. 2014, 23, 253–262. [Google Scholar] [CrossRef]
Characteristic | Data Resolution, km | Method of Observation |
---|---|---|
Cloud optical thickness | 1 | [30] |
Liquid water path | 1 | [31] |
Droplets effective radius | 1 | [30] |
Cloud multi-layer flag | 1 | [32] |
Cloud phase infrared | 1 | [31,33] |
Water vapor path | 1 | [34] |
Cloud fraction | 5 | [31] |
Characteristics | Data Grid Step, km | All Cases | Only Northern Advection Cases (NA Cases) | Selected Northern Advection Cases for Numerical Experiments (NWP Cases) |
---|---|---|---|---|
Number of days | All: 116 | All: 66 | All: 4 | |
2018: 26 | 2018: 11 | 2018: 22/04, 31/05 | ||
2019: 42 | 2019: 16 | |||
2020: 48 | 2020: 39 | 2020: 08/05, 22/05 | ||
Effective radius of cloud droplets (Reff), μm | 1 | 9/4 | 9/4 | 11/4 |
Reff error, % | 7/2 | 6/1 | 6/1 | |
Liquid water path (LWP), g/m2 | 106/138 | 120/150 | 151/175 | |
LWP error, % | 16/6 | 16/6 | 15/4 | |
Liquid cloud optical thickness (COTliq) | 19/21 | 21/22 | 23/22 | |
COTliq error, % | 7/5 | 7/5 | 7/4 | |
Number of points | 338065 | 187152 | 28809 | |
Number of points | 5 | 19705 | 11979 | 1371 |
Nd according to method 1, cm−3 | ||||
2018–2020 2018–2019 2020 | 1 | 246/274 252/270 232/281 | 250/286 272/292 232/278 | 188/159 240/188 144/114 |
2018–2020 2018–2019 2020 | 5 | 213/250 220/244 201/256 | 223/254 243/256 208/259 | 167/133 212/132 129/112 |
Nd according to method 2, cm−3 | ||||
2018–2020 2018–2019 2020 | 1 | 280/322 288/318 264/331 | 285/336 310/345 263/327 | 212/185 272/220 161/130 |
2018–2020 2018–2019 2020 | 5 | 259/309 267/303 245/321 | 272/327 300/331 251/321 | 194/153 254/169 151/123 |
Data | Sample | ΔNd, cm−3 | ΔReff, μm | ΔCOT | Number of Points |
---|---|---|---|---|---|
MODIS | NA | −43 ± 28 (−12 ± 7%) | 0.8 ± 0.1 (8 ± 1%) | −1.3 ± 1.0 (−5 ± 2%) | 84,866 |
NWP | −132 ± 42 (−45 ± 9%) | 2.3 ± 0.4 (25 ± 5%) | −4.0 ± 1.9 (18 ± 4%) | 15,068 | |
COSMO-Ru | NWP (variant 1) | −50 | 0.5 ± 0.2 (6 ± 2%) | −1.8 ± 1.7 (−4 ± 2%) | 2,668,076 |
NWP (variant 2) | −100 | 1.1 ± 0.5 (15 ± 5%) | −4.0 ± 3.7 (−9 ± 5%) | 2,684,304 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuvalova, J.; Chubarova, N.; Shatunova, M. Impact of Cloud Condensation Nuclei Reduction on Cloud Characteristics and Solar Radiation during COVID-19 Lockdown 2020 in Moscow. Atmosphere 2022, 13, 1710. https://doi.org/10.3390/atmos13101710
Shuvalova J, Chubarova N, Shatunova M. Impact of Cloud Condensation Nuclei Reduction on Cloud Characteristics and Solar Radiation during COVID-19 Lockdown 2020 in Moscow. Atmosphere. 2022; 13(10):1710. https://doi.org/10.3390/atmos13101710
Chicago/Turabian StyleShuvalova, Julia, Natalia Chubarova, and Marina Shatunova. 2022. "Impact of Cloud Condensation Nuclei Reduction on Cloud Characteristics and Solar Radiation during COVID-19 Lockdown 2020 in Moscow" Atmosphere 13, no. 10: 1710. https://doi.org/10.3390/atmos13101710
APA StyleShuvalova, J., Chubarova, N., & Shatunova, M. (2022). Impact of Cloud Condensation Nuclei Reduction on Cloud Characteristics and Solar Radiation during COVID-19 Lockdown 2020 in Moscow. Atmosphere, 13(10), 1710. https://doi.org/10.3390/atmos13101710