The Effect of a Hybrid Pretreatment Device for CEMS on the Simultaneous Removal of PM2.5 and Water Vapor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hybrid Cyclone
2.2. PM2.5 Measurement Method
2.3. Experimental Materials and Apparatus
2.4. Experimental Procedure
2.4.1. Removal Efficiency of PM2.5
2.4.2. Effects of the Hybrid Cyclone on Humidity and SO2
2.5. QA/QC
3. Results and Discussion
3.1. Correlation between OPC and Gravimetric Method
3.2. Removal Efficieny of PM2.5
3.3. Effects of the Hybrid Cyclone on Its Outlet Humidity and SO2
3.4. Operating Cost
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dinh, T.V.; Kim, J.C. Moisture Removal Techniques for a Continuous Emission Monitoring System: A Review. Atmosphere 2021, 12, 61. [Google Scholar] [CrossRef]
- Jahnke, J.A. Continuous Emission Monitoring, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; ISBN 0-471-29227-3. [Google Scholar]
- Sun, Y.W.; Liu, W.Q.; Zeng, Y.; Wang, S.M.; Huang, S.H.; Xie, P.H.; Yu, X.M. Water Vapor Interference Correction in a Non Dispersive Infrared Multi-Gas Analyzer. Chin. Phys. Lett. 2011, 28, 073302. [Google Scholar] [CrossRef]
- Kim, J.C.; Dinh, T.V.; Choi, I.Y.; Song, K.Y. Physical and Chemical Factors Influencing the Continuous Monitoring of Carbon Monoxide Using NDIR Sensor. Proc. Int. Conf. Sens. Technol. ICST 2016, 2016, 316–319. [Google Scholar] [CrossRef]
- Mylläri, F.; Karjalainen, P.; Taipale, R.; Aalto, P.; Häyrinen, A.; Rautiainen, J.; Pirjola, L.; Hillamo, R.; Keskinen, J.; Rönkkö, T. Physical and Chemical Characteristics of Flue-Gas Particles in a Large Pulverized Fuel-Fired Power Plant Boiler during Co-Combustion of Coal and Wood Pellets. Combust. Flame 2017, 176, 554–566. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y.; Cui, L. Critical Review of Condensable Particulate Matter. Fuel 2018, 224, 801–813. [Google Scholar] [CrossRef]
- Shatskikh, Y.V.; Sharapov, A.I.; Byankin, I.G. Analysis of Deep Heat Recovery from Flue Gases. J. Phys. Conf. Ser. 2017, 891, 012188. [Google Scholar] [CrossRef]
- Ehrlich, C.; Noll, G.; Kalkoff, W.D.; Baumbach, G.; Dreiseidler, A. PM10, PM2.5 and PM1.0-Emissions from Industrial Plants—Results from Measurement Programmes in Germany. Atmos Environ. 2007, 41, 6236–6254. [Google Scholar] [CrossRef]
- Amir, V. Improving Steam Power Plant Efficiency Through Exergy Analysis: Ambient Temperature. In Proceedings of the 2nd International Conference on Mechanical, Production and Automobile Engineering (ICMPAE), Singapore, 28–29 April 2012; pp. 209–212. [Google Scholar]
- Rosen, M.A.; Tang, R. Improving Steam Power Plant Efficiency through Exergy Analysis: Effects of Altering Excess Combustion Air and Stack-Gas Temperature. Int. J. Exergy 2008, 5, 31–51. [Google Scholar] [CrossRef]
- US EPA. An Operator’ s Guide To Eliminating Bias In CEM Systems; United States Environmental Protection Agency: Washington DC, USA, 1994.
- Lee, J.Y.; Dinh, T.V.; Kim, D.J.; Choi, I.Y.; Ahn, J.W.; Park, S.Y.; Jung, Y.J.; Kim, J.C. Comparison of Water Pretreatment Devices for the Measurement of Polar Odorous Compounds. Appl. Sci. 2019, 9, 4045. [Google Scholar] [CrossRef]
- Kim, D.J.; Dinh, T.V.; Lee, J.Y.; Choi, I.Y.; Son, D.J.; Kim, I.Y.; Sunwoo, Y.; Kim, J.C. Effects of Water Removal Devices on Ambient Inorganic Air Pollutant Measurements. Int J. Environ. Res. Public Health 2019, 16, 3446. [Google Scholar] [CrossRef] [Green Version]
- Son, Y.S.; Lee, G.; Kim, J.C.; Han, J.S. Development of a Pretreatment System for the Analysis of Atmospheric Reduced Sulfur Compounds. Anal. Chem. 2013, 85, 10134–10141. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Dinh, T.V.; Kim, D.J.; Choi, I.Y.; Ahn, J.W.; Park, S.Y.; Jung, Y.J.; Kim, J.C. Effect of Conventional Water Pretreatment Devices on Polar Compound Analysis. Asian J. Atmos. Environ. 2019, 13, 249–258. [Google Scholar] [CrossRef]
- Kim, D.J.; Dinh, T.V.; Lee, J.Y.; Son, D.J.; Kim, J.C. Effect of Nafion Dryer and Cooler on Ambient Air Pollutant (O3, SO2, CO) Measurement. Asian J. Atmos. Environ. 2020, 14, 28–34. [Google Scholar] [CrossRef]
- Li, Y.; Qin, G.; Xiong, Z.; Ji, Y.F.; Fan, L. The Effect of Particle Humidity on Separation Efficiency for an Axial Cyclone Separator. Adv. Powder Technol. 2019, 30, 724–731. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, G.; Jin, R.; Chen, X.; Dong, K.; Jiang, Y.; Wang, B. Investigation into Water Vapor and Flue Gas Temperatures on the Separation Capability of a Novel Cyclone Separator. Powder Technol. 2020, 361, 171–178. [Google Scholar] [CrossRef]
- ISO 23210:2009; Stationary Source Emissions—Determination of PM10/PM2,5 Mass Concentration in Flue Gas—Measurement at Low Concentrations by Use of Impactors. ISO: Geneva, Switzerland, 2009.
- Incineration and Dioxins Review of Formation Processes. Available online: https://www.dcceew.gov.au/sites/default/files/documents/incineration-review.pdf (accessed on 29 July 2022).
- Korea EPA. Air Pollutant Emission Permit Criteria, Air Conservation Act; Korea EPA: Seoul, Korea, 2022; Volume 15. [Google Scholar]
- Son, J.; Kim, K.; Kang, Y.; Park, S. Distribution Characteristics of Dioxin Concentration in Pyrolysis-Gasification-Melting Process Facilities. Anal. Sci. Technol. 2007, 20, 10–16. [Google Scholar]
- Sunhee, K.; Taehong, S.; Kyungchun, K. Thermodynamic Analysis on Organic Rankine Cycle Using Gas of the Chimney in a Resource Recovery Facility. J. Korean Inst. Gas 2017, 21, 27–35. [Google Scholar] [CrossRef]
- CleanSYS. Korea Environment Corporation(KECO). Available online: https://cleansys.or.kr/index.do (accessed on 30 June 2022).
- Buonanno, G.; Ficco, G.; Stabile, L. Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste Management. 2009, 29, 749–755. [Google Scholar] [CrossRef]
- Muller, H. Sulfur Dioxide; Wiley Online Library: Frankfurt, Germany, 2000; Volume 35. [Google Scholar]
- Zhou, Q.; Guo, H.; Yang, P.; Wang, Z. Solubility of SO2 in Water from 263.15 to 393.15 K and from 10 to 300 Bar: Quantitative Raman Spectroscopic Measurements and PC-SAFT Prediction. Ind. Eng. Chem. Res. 2020, 59, 12855–12861. [Google Scholar] [CrossRef]
- Smorodin, V.Y.; Hopke, P.K. Condensation Activation and Nucleation on Heterogeneous Aerosol Nanoparticles. J. Phys. Chem. B 2004, 108, 9147–9157. [Google Scholar] [CrossRef]
- Fletcher, N.H. Size Effect in Heterogeneous Nucleation. J. Chem. Phys. 1958, 29, 572–576. [Google Scholar] [CrossRef]
- Method 6C-Sulfur Dioxide-Instrumental Analyzer Procedure. Available online: https://www.epa.gov/sites/default/files/2017-08/documents/method_6c.pdf. (accessed on 29 July 2022).
- Lundgren, D.A.; Cooper, D.W. Effect of Humidify on Light-Scattering Methods of Measuring Particle Concentration. J. Air Pollut. Control Assoc. 1969, 19, 243–247. [Google Scholar] [CrossRef]
- Nessler, R.; Weingartner, E.; Baltensperger, U. Effect of Humidity on Aerosol Light Absorption and Its Implications for Extinction and the Single Scattering Albedo Illustrated for a Site in the Lower Free Troposphere. J. Aerosol Sci. 2005, 36, 958–972. [Google Scholar] [CrossRef]
- Han, J.; Liu, X.; Chen, D.; Jiang, M. Influence of Relative Humidity on Real-Time Measurements of Particulate Matter Concentration via Light Scattering. J. Aerosol Sci. 2020, 139, 105462. [Google Scholar] [CrossRef]
- Lee, B.U.; Kim, S.S. New Type of Impactor with a Cooled Impaction Plate for Capturing PM2.5 and Other Aerosols. J. Aerosol Sci. 2003, 34, 957–962. [Google Scholar] [CrossRef]
- Busnaina, A.A.; Elsawy, T. The Effect of Relative Humidity on Particle Adhesion and Removal. J. Adhes. 2000, 74, 391–409. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B. Effect of Relative Humidity on Dust Removal Performance of Electrodynamic Dust Shield. J. Electrostat. 2020, 105, 103434. [Google Scholar] [CrossRef]
- Stolberg-Rohr, T.; Buchner, R.; Krishna, A.; Munch, L.; Pihl, K.; Hansen, J.S.; Tojaga, S.; Moos, H.G.; Jensen, J.M. NDIR Humidity Measurement. Proc. IEEE Sens. 2011, 1058–1061. [Google Scholar] [CrossRef]
- National Institute of Environmental Sciences Air Pollution Process Test Standards; National Institute of Environmental Sciences: Incheon, Korea, 2022.
Dimensions | Value(mm) |
---|---|
Body Diameter | 23 |
Height of Inlet | 11.5 |
Width of inlet | 4.6 |
Diameter of Gas Exit | 11.5 |
Length of Vortex Finder | 11.5 |
Length of Body | 34.5 |
Length of Cone | 115 |
Diameter of Dust Outlet | 9 |
Emission Source | Temperature (°C) | Humidity (Vol%) | Dust (mg/Sm3) |
---|---|---|---|
Waste incinerator site A [22] (4.8 ton/day) | 108 | 16.1 | 25 |
Waste incinerator site B [23] (170 ton/day) | 176.6 | 16 | 1.15 1 |
Items | Value |
---|---|
Flow rate (slpm) | 6.0 |
Temperature of gas (°C) | 180 |
PM2.5 density (mg/m3) | 1.0 |
Inlet temperature of Hybrid cyclone (°C) | 25, 15, 5, −5, −15, and −25 |
Outlet temperature of Hybrid cyclone (°C) | 45 |
Absolute humidity (g/m3) | 20, 90, and 150 |
SO2 concentration (ppm) | 105.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, I.-Y.; Dinh, T.-V.; Kim, D.-E.; Jun, B.-H.; Lee, S.-A.; Park, Y.-M.; Kim, J.-C. The Effect of a Hybrid Pretreatment Device for CEMS on the Simultaneous Removal of PM2.5 and Water Vapor. Atmosphere 2022, 13, 1601. https://doi.org/10.3390/atmos13101601
Choi I-Y, Dinh T-V, Kim D-E, Jun B-H, Lee S-A, Park Y-M, Kim J-C. The Effect of a Hybrid Pretreatment Device for CEMS on the Simultaneous Removal of PM2.5 and Water Vapor. Atmosphere. 2022; 13(10):1601. https://doi.org/10.3390/atmos13101601
Chicago/Turabian StyleChoi, In-Young, Trieu-Vuong Dinh, Dong-Eun Kim, Bong-Hyun Jun, Seung-Ae Lee, Young-Min Park, and Jo-Chun Kim. 2022. "The Effect of a Hybrid Pretreatment Device for CEMS on the Simultaneous Removal of PM2.5 and Water Vapor" Atmosphere 13, no. 10: 1601. https://doi.org/10.3390/atmos13101601
APA StyleChoi, I. -Y., Dinh, T. -V., Kim, D. -E., Jun, B. -H., Lee, S. -A., Park, Y. -M., & Kim, J. -C. (2022). The Effect of a Hybrid Pretreatment Device for CEMS on the Simultaneous Removal of PM2.5 and Water Vapor. Atmosphere, 13(10), 1601. https://doi.org/10.3390/atmos13101601