Joint Spatio-Temporal Analysis of Various Wildfire and Drought Indicators in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variable Definition
- : Surface nett radiation [MJ m−2 day−1];
- : Mean daily air temperature at 2 m height [;
- : Dewpoint temperature [;
- : Maximum daily air temperature at 2 m height [;
- : Minimum daily air temperature at 2 m height [;
- : Wind speed at 2 m height [m s−1];
- : Height of location [m];
- : Soil heat flux density [MJ m−2 day−1].
- -
- : Deviation between total precipitation & potential evapotranspiration [mm];
- -
- : Potential evapotranspiration [mm];
- -
- : Dry spell (number of days without rain) [days];
- -
- : Total precipitation [mm];
- -
- : Negative precipitation anomaly [mm];
- -
- : Burned area [ha];
- -
- : Carbon emissions [g C m−2];
- -
- : Number of hotspots [unit hotspot].
2.2. Empirical Orthogonal Function Based on Singular Value Decomposition
2.3. Dependency and Correlation Analysis
3. Results
3.1. Burned Area
3.2. Carbon Emissions
3.3. Hotspot
3.4. Dependency and Correlation Measurement
3.5. Distribution Analysis of Climate Indicators
4. Discussion
4.1. 1997–1998 Wildfire Event Anomaly
4.2. 2013 and 2014 Wildfire Event Anomaly
4.3. Potential Evapotranspiration in Wildfires Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samsuri, S.; Surati Jaya, I.N.; Syaufina, L. Spatial Model of Land and Forest Fire Risk Index, Case Study in Undefined. Master’s Thesis, Central Kalimantan Province, IPB University, Bogor, Indonesia, August 2008. [Google Scholar]
- Tan, Z.D.; Carrasco, L.R.; Taylor, D. Spatial correlates of wildfires in Indonesia. Int. J. Wildland Fire 2020, 29, 1088–1099. [Google Scholar] [CrossRef]
- Septiawan, P.; Nurdiati, S.; Sopaheluwakan, A. Numerical Analysis using Empirical Orthogonal Function Based on Multivariate Singular Value Decomposition on Indonesian Forest Fire Signal. IOP Conf. Ser. Earth Environ. Sci. 2019, 303, 012053. [Google Scholar] [CrossRef]
- Nurdiati, S.; Sopaheluwakan, A.; Agustina, A.; Septiawan, P. Multivariate analysis on Indonesian forest fire using combined empirical orthogonal function and covariance matrices. IOP Conf. Ser. Earth Environ. Sci. 2019, 299, 012048. [Google Scholar] [CrossRef]
- Nurdiati, S.; Sopaheluwakan, A.; Septiawan, P. Spatial and temporal analysis of El Niño impact on land and forest fire on Kalimantan and Sumatra. Agromet 2021, 35, 1–10. [Google Scholar] [CrossRef]
- World Bank Group. The Cost of Fire: An Economic Analysis of Indonesia’s 2015 Fire Crisis; World Bank: Jakarta, ID, Indonesia; Available online: https://olc.worldbank.org/content/cost-fire-economic-analysis-indonesia%E2%80%99s-2015-fire-crisis (accessed on 2 August 2022).
- Miettinen, J.; Shi, C.; Liew, S.C. 2015 land cover map of south-east Asia at 250-m spatial resolution. Remote Sens. Lett. 2016, 7, 701–710. [Google Scholar] [CrossRef]
- Nurdiati, S.; Sopaheluwakan, A.; Septiawan, P. Joint Pattern Analysis of Forest Fire and Drought Indicators in Southeast Asia Associated with ENSO and IOD. Atmosphere 2022, 13, 1198. [Google Scholar] [CrossRef]
- Nechita, N.B.; Krol, M.; van der Werf Guido, R.; Johannes, W.K.; Pandey, S.; Huijnen, V.; Clerbaux, C.; Coheur, P.; Merritt, N.D.; Röckmann, T. Monitoring emissions from the 2015 Indonesian fires using CO satellite data. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 1760. [Google Scholar] [CrossRef]
- Prinz, D. Contributor and Victim—Indonesia’s Role in Global Climate Change with Special Reference to Kalimantan. Sains Environ. Technol. J. Indones. 2009, 1, 139–153. [Google Scholar] [CrossRef]
- Benson, R.P.; Roads, J.O.; Weise, D.R. Climatic and Weather Factors Affecting Fire Occurrence and behaviour. Dev. Environ. Sci. 2009, 8, 37–59. [Google Scholar] [CrossRef]
- Plank, S.; Fuchs, E.M.; Frey, C. A Fully Automatic Instantaneous Fire Hotspot Detection Processor Based on AVHRR Imagery—A TIMELINE Thematic Processor. Remote Sens. 2017, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Suryaningsih, N.; Prasetyowati, A.; Busalim, F. Performance of fire hotspot detection system with sensor based on angle width and voltage difference monitoring for forest security. IOP Conf. Ser. Earth Environ. Sci. 2021, 880, 012030. [Google Scholar] [CrossRef]
- Kato, S.; Miyamoto, H.; Amici, S.; Oda, A.; Matsushita, H.; Nakamura, R. Automated classification of heat sources detected using SWIR remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102491. [Google Scholar] [CrossRef]
- Datta, A.; Krishnamoorti, R. Understanding the Greenhouse Gas Impact of Deforestation Fires in Indonesia and Brazil in 2019 and 2020. Front. Clim. 2022, 4, 799632. [Google Scholar] [CrossRef]
- Fanin, T.; Van der Werf, R.G. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 2017, 14, 3995–4008. [Google Scholar] [CrossRef]
- Lestari, I.L.; Nurdiati, S.; Sopaheluwakan, A. Analysis of Empirical Orthogonal Function (Eof) based Singular Value Decomposition (Svd) to Rainfall Data in Indonesia. J. Math. Its Appl. 2016, 15, 13–22. [Google Scholar] [CrossRef]
- McEvoy, D.J.; Huntington, J.L.; Hobbins, M.T.; Wood, A.; Morton, C.; Anderson, M.; Hain, C. The evaporative de-mand drought index. Part II: CONUS-wide assessmentagainst common drought indicators. J. Hydrome-Teorol. 2016, 17, 1763–1779. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.X.; Ma, Z.G.; Yang, Q.; Lv, M.X.; Clark, R. Assessment of an evapotranspirationdeficit drought index in relation to impacts on ecosystems. Adv. Atmos. Sci 2019, 36, 1273–1287. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Impact of Evapotranspiration Formulations at Various Elevations on the Reconnaissance Drought Index. Water Resour. Manag. 2017, 31, 531–548. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2002, 63, 4671–4712. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Duan, Y.; Duan, J.; Jian, D.; Ma, Z. A daily drought index based on evapotranspiration and its application in regional drought analyses. Sci. China Earth Sci. 2022, 65, 317–336. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological droughts. U.S. Department of Commerce. Weather. Bur. Res. Pap. 1965, 45, 58. [Google Scholar]
- Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2007, 21, 821–833. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Qin, Q.; Wang, K. Monitoring droughtover the conterminous United States using MODIS and NCEP Reanalysis-2 data. J. Appl. Meteor. Clim. 2010, 49, 1665–1680. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A Remotely Sensed Global Terrestrial Drought Severity Index. Bull. Am. Meteorol. Soc. 2013, 94, 83–98. [Google Scholar] [CrossRef]
- Varol, T.; Ertuğrul, M.; Özel, H.B. Drought-Forest Fire Relationships. In Mediterranean Identities—Environment, Society, Culture; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Tjostheim, D.; Otneim; Stove, B. Statistical dependence: Beyond Pearson’s ρ. arXiv 2018, arXiv:1809.10455v1. [Google Scholar] [CrossRef]
- Pearson, K. Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Chatterjee, S. A New Coefficient of Correlation. J. Am. Stat. Assoc. 2021, 116, 2009–2022. [Google Scholar] [CrossRef]
- Gunadi, A.; Gunardi, M. The Law of Forest in Indonesia: Prevention and Suppression of Forest Fires. Bina Huk. Lingkung. 2019, 1, 113. [Google Scholar] [CrossRef]
- Cahyono, S.A.; Warsito, S.P.; Andayani, W.; Darwanto, D.H. Factors Affecting Forest Fires in Indonesia and Its Policy Implications. J. Sylva Lestari 2015, 3, 103–112. [Google Scholar] [CrossRef]
- Zahran, E.S.M.M.; Shams, S.; Said, S.N.M.B.M. Validation of forest fire hotspot analysis in GIS using forest fire contributory factors. Syst. Rev. Pharm. 2020, 11, 249–255. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Turmudi, T.; Kardono, P.; Hartanto, P.; Ardhitasari, Y. wildfire Prevention Through the Hotspot Movement Pattern Approach. IOP Conf. Ser. Earth Environ. Sci. 2018, 123, 012027. [Google Scholar] [CrossRef]
- Ardiansyah, M.; Boer, R.; Situmorang, A.P. Typology of land and forest fire in South Sumatra, Indonesia Based on Assessment of MODIS Data. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 12058. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 monthly averaged data on single levels from 1959 to present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2019. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land hourly data from 1981 to present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2019. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. A 1948, 193, 120–146. [Google Scholar]
- Monteith, J.L. Evaporation and Environment. In Proceedings of the 19th Symposium of the Society for Experimental Biology; Cambridge Univ. Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- Björnsson, H.; Venegas, S. A Manual for EOF and SVD Analyses of Climate Data; McGill University: Quebec, QC, Canada, 1997. [Google Scholar]
- Navarra, A.; Simoncini, V. A Guide to Empirical Orthogonal Function for Climate Data Analysis; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Voss, H.; Kurths, J. Reconstructionof nonlinear time delay models fromdata by the use of optimal transforma-tions. Phys. Lett. A 1997, 234, 336–344. [Google Scholar] [CrossRef]
- Tacconi, L. Fires in Indonesia: Causes, Costs and Policy Implications; CIFOR Occasional Paper: Bogor, Indonesia, 2003; p. 38. [Google Scholar]
- Purnomo, H.; Okarda, B.; Shantiko, B.; Achdiawan, R.; Dermawan, A.; Kartodihardjo, H.; Dewayani, A. wildfires, toxic haze and local politics in Indonesia. Int. For. Rev. 2019, 21, 486–500. [Google Scholar]
- Kuswanto, H.; Setiawan, D.; Sopaheluwakan, A. Clustering of Precipitation Pattern in Indonesia Using TRMM Satellite Data. Eng. Technol. Appl. Sci. Res. 2019, 9, 4484–4489. [Google Scholar] [CrossRef]
- Aldrian, E.; Susanto, R.D. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol. 2003, 23, 1435–1452. [Google Scholar] [CrossRef]
- Nurdiati, S.; Sopaheluwakan, A.; Julianto, M.T.; Septiawan, P.; Rohimahastuti, F. Modelling and analysis impact of El Nino and IOD to land and forest fire using polynomial and generalized logistic function: Cases study in South Sumatra and Kalimantan, Indonesia. Model. Earth Syst. Environ. 2021, 8, 3341–3356. [Google Scholar] [CrossRef]
- Changnon, S.A. Impacts of 1997–98 El Niño–Generated Weather in the United States. Bull. Am. Meteorol. Soc. 1999, 80, 1819–1827. Available online: http://www.jstor.org/stable/26214945 (accessed on 13 July 2022). [CrossRef]
- Byron, N.; Shepherd, G. Indonesia and the 1997-98 EL NIÑO: Fire Problems and Long-Term Solutions. Nat. Resour. Perspect. 1998, 28. [Google Scholar] [CrossRef]
- Hinrichs, A.; Siegert, F. Indonesia: Fire Damages in East Kalimantan in 1997-98 RELATED TO LAND USE—Ers-Sar Inventory Results (Iffn No. 23). Available online: https://gfmc.online/iffn/country/id/id_27.html (accessed on 15 July 2022).
- Lennertz, R.; Panzer, K.F. Preliminary Assessment of the Drought and Forest Damage in Kalimantan Timur; GTZ-TAD Report; DFS German Forest Inventory Service: Feldkirchen Germany, 1983. [Google Scholar]
- Sadli, M. The Indonesian Crisis. ASEAN Econ. Bull. 1998, 15, 272–280. [Google Scholar] [CrossRef]
- Radelet, S.; Sachs, J.D.; Cooper, R.N.; Bosworth, B.P. The East Asian Financial Crisis: Diagnosis, Remedies, Prospects. Brook. Pap. Econ. Act. 1998, 1998, 2534670. [Google Scholar] [CrossRef]
- Yamazawa, I. The Asian Economic Crisis and Japan (PDF). Dev. Econ. 1998, 36, 332–351. [Google Scholar] [CrossRef]
- Badri, M.; Lubis, D.P.; Susanto, D.; Suharjito, D. The Viewpoint of Stakeholders on The Causes Of wildfires in Riau Province, Indonesia. RJOAS 2019, 2, 4–10. [Google Scholar] [CrossRef]
- Kusumaningtyas, S.D.A.; Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 2016, 11, 075007. [Google Scholar] [CrossRef]
- McBride, J.L.; Sahany, S.; Hassim, M.E.; Nguyen, C.M.; Lim, S.Y.; Rahmat, R.; Cheong, W.K. The 2014 record dry spell at Singapore: An intertropical convergence zone (itcz) drought. Bull. Am. Met. Soc. 2015, 96, S126–S130. [Google Scholar] [CrossRef]
- Nurdiati, S.; Sopaheluwakan, A.; Septiawan, P. Joint Distribution Analysis of Forest Fires and Precipitation in Response to ENSO, IOD, and MJO (Study Case: Sumatra, Indonesia). Atmosphere 2022, 13, 537. [Google Scholar] [CrossRef]
- Miralles, D.G.; Brutsaert, W.; Dolman, A.J.; Gash, J.H. On the use of the term “evapotranspiration”. Water Resour. Res. 2020, 56, e2020WR028055. [Google Scholar] [CrossRef]
- Van, R.K.; James, A.L.; Alina, C.C.; Nicholas, A.P.; Derek, J.C.; Douglas, F.S.; Jonathan, T.K.; Malcolm, P.N. Water balance and topography predict fire and forest structure patterns. For. Ecol. Manag. 2015, 338, 1–13. [Google Scholar] [CrossRef]
- Reyer, C.; Lasch, P.; Mohren, G.M.J.; Sterck, F.J. Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—A model-based analysis. Ann. For. Sci. 2010, 67, 805. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Williams, A.P.; Seager, R.; Macalady, A.K.; Berkelhammer, M.; Crimmins, M.A.; Swetnam, T.W.; Trugman, A.T.; Buenning, N.; Noone, D.; McDowell, N.G.; et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 2015, 24, 14–26. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. The impact of a 2 × CO2 climate on lightning caused fires. J. Clim. 1994, 7, 1484–1494. [Google Scholar] [CrossRef]
- Boer, M.; Bowman, D.; Murphy, B.; Cary, G.; Cochrane, M.; Fensham, R.; Krawchuk, M.; Price, O.; Resco de Dios, V.; Williams, R.; et al. Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes. Environ. Res. Lett. 2016, 11, 065002. [Google Scholar] [CrossRef]
- Venkatesh, K.; Preethi, K.; Ramesh, H. Evaluating the effects of forest fire on water balance using fire susceptibility maps. Ecol. Indic. 2020, 110, 105856. [Google Scholar] [CrossRef]
- Don, A.W.; Francisco, B.-C.; Richard, P.S.; de Arellano, P.R. The effect of wildfire on the structure and water balance of a high conservation value Hualo (Nothofagus glauca (Phil.) Krasser.) forest in central Chile. For. Ecol. Manag. 2020, 472, 118219. [Google Scholar] [CrossRef]
- Moutahir, H.; Touhami, I.; Moghli, A.; Bellot, J. Water Balance Estimation Under Wildfire and Restoration Scenarios in Semiarid Areas: Effects on Aquifer Recharge. In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources. CAJG 2018, Advances in Science, Technology & Innovation 2019; Chaminé, H., Barbieri, M., Kisi, O., Chen, M., Merkel, B., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Healey, N.C.; Rover, J.A. Analyzing the Effects of Land Cover Change on the Water Balance for Case Study Watersheds in Different Forested Ecosystems in the USA. Land 2022, 11, 316. [Google Scholar] [CrossRef]
- Boisramé, G.F.S.; Thompson, S.E.; Tague, C.; Stephens, S.L. Restoring a natural fire regime alters the water balance of a Sierra Nevada catchment. Water Resour. Res. 2019, 55, 5751–5769. [Google Scholar] [CrossRef]
dr-ba | dr-ec | dr-hs | eto-ba | eto-ec | eto-hs | ds-ba | ds-ec | ds-hs | tp-ba | tp-ec | tp-hs | pa-ba | pa-ec | pa-hs | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependency | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Linear correlation | 0.243 | 0.14 | 0.2 | 0.22 | 0.131 | 0.164 | 0.313 | 0.188 | 0.242 | 0.232 | 0.133 | 0.189 | 0.235 | 0.137 | 0.201 |
Monotonic correlation | 0.416 | 0.397 | 0.37 | 0.31 | 0.299 | 0.277 | 0.37 | 0.35 | 0.362 | 0.414 | 0.395 | 0.37 | 0.419 | 0.404 | 0.404 |
Nonlinear correlation | 0.304 | 0.298 | 0.443 | 0.452 | 0.456 | 0.634 | 0.666 | 0.673 | 0.775 | 0.527 | 0.522 | 0.693 | 0.532 | 0.53 | 0.717 |
Dependency * | 0.996 | 0.999 | 0.998 | 1 | 1 | 1 | 0.999 | 1 | 0.999 | 1 | 1 | 1 | 0.999 | 0.999 | 0.999 |
Linear correlation * | 0.053 | 0.078 | 0.037 | 0.13 | 0.049 | 0.018 | 0.373 | 0.243 | 0.158 | 0.127 | 0.063 | 0.045 | 0.406 | 0.291 | 0.239 |
Monotonic correlation * | 0.01 | 0.099 | 0.151 | 0.38 | 0.299 | 0.033 | 0.627 | 0.52 | 0.323 | 0.253 | 0.159 | 0.029 | 0.623 | 0.563 | 0.391 |
Nonlinear correlation * | 0.06 | 0.039 | 0.054 | 0.115 | 0.115 | 0.079 | 0.273 | 0.29 | 0.098 | 0.091 | 0.061 | 0.042 | 0.261 | 0.219 | 0.128 |
Dependency ** | 0.996 | 0.99 | 0.998 | 1 | 1 | 1 | 0.999 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | 0.997 | 0.996 | 0.998 |
Linear correlation ** | 0.576 | 0.466 | 0.687 | 0.599 | 0.507 | 0.649 | 0.657 | 0.539 | 0.758 | 0.56 | 0.451 | 0.677 | 0.562 | 0.444 | 0.671 |
Monotonic correlation ** | 0.75 | 0.674 | 0.708 | 0.526 | 0.48 | 0.566 | 0.718 | 0.594 | 0.716 | 0.739 | 0.656 | 0.697 | 0.804 | 0.708 | 0.751 |
Nonlinear correlation ** | 0.415 | 0.295 | 0.337 | 0.165 | 0.143 | 0.215 | 0.428 | 0.3 | 0.382 | 0.402 | 0.314 | 0.318 | 0.512 | 0.379 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurdiati, S.; Sopaheluwakan, A.; Septiawan, P.; Ardhana, M.R. Joint Spatio-Temporal Analysis of Various Wildfire and Drought Indicators in Indonesia. Atmosphere 2022, 13, 1591. https://doi.org/10.3390/atmos13101591
Nurdiati S, Sopaheluwakan A, Septiawan P, Ardhana MR. Joint Spatio-Temporal Analysis of Various Wildfire and Drought Indicators in Indonesia. Atmosphere. 2022; 13(10):1591. https://doi.org/10.3390/atmos13101591
Chicago/Turabian StyleNurdiati, Sri, Ardhasena Sopaheluwakan, Pandu Septiawan, and Muhammad Reza Ardhana. 2022. "Joint Spatio-Temporal Analysis of Various Wildfire and Drought Indicators in Indonesia" Atmosphere 13, no. 10: 1591. https://doi.org/10.3390/atmos13101591
APA StyleNurdiati, S., Sopaheluwakan, A., Septiawan, P., & Ardhana, M. R. (2022). Joint Spatio-Temporal Analysis of Various Wildfire and Drought Indicators in Indonesia. Atmosphere, 13(10), 1591. https://doi.org/10.3390/atmos13101591