Effects of Effective Precipitation and Accumulated Temperature on the Terrestrial EVI (Enhanced Vegetation Index) in the Yellow River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Data Processing
2.1.1. MODIS EVI Data
2.1.2. Meteorological Data
2.1.3. Terrestrial Ecosystems Data
2.2. Methods
2.2.1. Linear Regression Method
2.2.2. Mann–Kendall Test
2.2.3. Correlation Analysis
3. Results and Discussion
3.1. Spatiotemporal Patterns of EVI in the YRB
3.1.1. Temporal Variation of EVI
3.1.2. Spatial Pattern of EVI
3.1.3. Spatial Distribution of EVI Tendency
3.2. Spatiotemporal Distribution of Epr and At in the YRB
3.2.1. Temporal Variation of Epr and At
3.2.2. Spatial Patterns of Epr and At
3.3. Relationship between EVI and Hydrothermal Conditions
3.3.1. Variations EVI with Various Epr and At Zones
3.3.2. Correlations between EVI and Hydrothermal Conditions
3.3.3. Different Thresholds of Epr and At in Different Ecosystems
4. Conclusions and Limitations
- (1)
- The multiyear EVI increased in the YRB from 2001 to 2020. The EVI decreased–increased–decreased with the elevation increasing. The elevation thresholds (1300 m and 3500 m altitudes) affecting EVI variations were clarified. EVI varied diversely during the different elevation threshold zones.
- (2)
- For major ecosystems and the whole YRB, the EVI, Epr and At have all increased. Their increasing rates most significantly changed in the farmland, grassland, and water bodies and wetland ecosystems, respectively.
- (3)
- The EVI varied with the variation of hydrothermal conditions in the YRB over the past 20 years. Nine dynamical threshold zones combining Epr (200 mm or 600 mm) with At (1500 °C or 3500 °C) were confirmed. Compared to the At, the Epr was the main driving factor of the EVI variations in the YRB.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lingtong, D.; Qingjiu, T.; Lei, W. Influence of vegetation structural features on MODIS spectral drought index. Spectrosc. Spectr. Anal. 2015, 35, 982–986. [Google Scholar]
- Tian, Z.; Ren, Z.; Wei, H. Spatial and temporal mechanisms driving vegetation evolution in the Yellow River Basin from 2000 to 2020. Environ. Sci. 2022, 43, 743–751. [Google Scholar]
- Pang, G.; Wang, X.; Yang, M. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quat. Int. 2017, 444, 87–96. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Kaufmann, R.K. Reply to Comment on "Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999" by J. R. Ahlbeck. J. Geophys. Res. 2002, 107, 4127. [Google Scholar] [CrossRef]
- Braswell, B.H.; Schimel, D.S.; Under, E.; Iii, B.M. The response of global terrestrial ecosystems to interannual temperature variability. Science 1997, 278, 870–872. [Google Scholar] [CrossRef]
- Bower, J.R.; Ichii, T. The red flying squid (Ommastrephes bartramii): A review of recent research and the fishery in Japan. Fish. Res. 2005, 76, 39–55. [Google Scholar] [CrossRef]
- Gao, Q.; Schwartz, M.W.; Zhu, W.; Wan, Y.; Qin, X.; Ma, X.; Liu, S.; Williamson, M.A.; Peters, C.B.; Yue, L. Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors. Remote Sens. 2016, 8, 384. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T. The Potential of the Least-Squares Spectral and Cross-Wavelet Analyses for Near-Real-Time Disturbance Detection within Unequally Spaced Satellite Image Time Series. Remote Sens. 2020, 12, 2446. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Abbes, A.B.; Rhif, M.; Pagiatakis, S.D.; Farah, I.R. Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software. Int. J. Remote Sens. 2019, 41, 2374–2390. [Google Scholar] [CrossRef]
- Omar, M.S.; Kawamukai, H. Prediction of NDVI using the Holt-Winters model in high and low vegetation regions: A case study of East Africa. Sci. Afr. 2021, 14, e01020. [Google Scholar] [CrossRef]
- Song, T. The exploration of China’s National Park System Pilot Project: Taking Northeast China Tiger and Leopard National Park System Pilot Area as an example. Int. J. Geoherit. Parks 2020, 8, 203–209. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Li, H.; Shi, C.; Zhang, Y.; Ning, T.; Sun, P.; Liu, X.; Ma, X.; Liu, W.; Collins, A.L. Using the Budyko hypothesis for detecting and attributing changes in runoff to climate and vegetation change in the soft sandstone area of the middle Yellow River basin, China. Sci. Total Environ. 2020, 703, 135588. [Google Scholar] [CrossRef]
- Li, H.; Fan, Y.; Gong, Z.; Zhou, D. Water accessibility assessment of freshwater wetlands in the Yellow River Delta National Nature Reserve, China. Ecohydrol. Hydrobiol. 2020, 20, 21–30. [Google Scholar] [CrossRef]
- Gao, X.; Huang, X.; Lo, K.; Dang, Q.; Wen, R. Vegetation responses to climate change in the Qilian Mountain Nature Reserve, Northwest China. Glob. Ecol. Conserv. 2021, 28, e01698. [Google Scholar] [CrossRef]
- He, P.; Xu, L.; Liu, Z.; Jing, Y.; Zhu, W. Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002–2018. Reg. Sustain. 2021, 2, 36–46. [Google Scholar] [CrossRef]
- Forzieri, G.; Alkama, R.; Miralles, D.G.; Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 2018, 1727, 1180–1184. [Google Scholar] [CrossRef]
- Nemani, R.R. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Aguilera, F.; Orlandi, F.; Ruiz-Valenzuela, L.; Msallem, M.; Fornaciari, M. Analysis and interpretation of long temporal trends in cumulative temperatures and olive reproductive features using a seasonal trend decomposition procedure. Agric. For. Meteorol. 2015, 203, 208–216. [Google Scholar] [CrossRef]
- Denghua, Y.; Zhe, Y.; Zhiyong, Y.; Yong, W. Analysis of spatial and temporal variability of drought in the Haihe River Basin since 1961. Adv. Water Sci. 2013, 24, 8. [Google Scholar]
- Priego-Quesada, J.I.; Oficial-Casado, F.; Gandia-Soriano, A.; Carpes, F.P. A preliminary investigation about the observation of regional skin temperatures following cumulative training loads in triathletes during training camp. J. Therm. Biol. 2019, 84, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, A.E.; Viviroli, D.; Seibert, J. Effective precipitation duration for runoff peaks based on catchment modelling. J. Hydrol. 2018, 556, 510–522. [Google Scholar] [CrossRef]
- Wenbo, Z.; Xiaodong, Z.; Jingjing, Z.; Lianqi, Z. Forest vegetation phenology and its response to climate change in the Fuyu Mountains. J. Geogr. Sci. 2019, 29, 131–145. [Google Scholar]
- Cabello, J.; Alcaraz-Segura, D.; Ferrero, R.; Castro, A.J.; Liras, E. The role of vegetation and lithology in the spatial and inter-annual response of EVI to climate in drylands of Southeastern Spain. J. Arid Environ. 2012, 79, 76–83. [Google Scholar] [CrossRef]
- Hongwei, Z.; Bingfang, W.; Shuai, W.; Walter, M.; Fuyou, T.; Eric, M.Z.; Nitesh, P.; Mavengahama, S. A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa. Chin. Geogr. Sci. 2020, 30, 397–409. [Google Scholar]
- Sonali, P.; Paul, S. Spatio-temporal dependency of vegetation dynamics on climatic variables during 1982–2015 over India. Adv. Space Res. 2021, 68, 4616–4635. [Google Scholar]
- Islam, A.R.M.T.; Islam, H.M.T.; Shahid, S.; Khatun, M.K.; Ali, M.M.; Rahman, M.S.; Ibrahim, S.M.; Almoajel, A.M. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change. J. Environ. Manag. 2021, 289, 112505. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Bunkei, M.; Wei, Y.; Jin, C.; Yuyichi, O.; Guoyu, Q. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest. Sensors 2007, 7, 2636–2651. [Google Scholar]
- Zhang, Y.; Zhou, G. Terrestrial transect study on driving mechanism of vegetation changes. Sci. China 2008, 51, 984–991. [Google Scholar] [CrossRef]
- Lu, M.; Sun, H.; Yan, D.; Xue, J.; Zhang, W. Projections of thermal growing season indices over China under global warming of 1.5 °C and 2.0 °C. Sci. Total Environ. 2021, 781, 146774. [Google Scholar] [CrossRef]
- Chen, H.; Ma, J.; Wei, J.; Gong, X.; Yu, X.; Guo, H.; Zhao, Y. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Sci. Total Environ. 2018, 635, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.; Yun, B.; Qi, L.; Deming, T. Remote sensing vegetation index and CASA model for estimating winter wheat yields in Shandong Province. Spectrosc. Spectr. Anal. 2021, 41, 257–264. [Google Scholar]
- Wang, J.; Liu, Z.; Gao, J.; Emanuele, L.; Ren, Y.; Shao, M.; Wei, X. The Grain for Green project eliminated the effect of soil erosion on organic carbon on China’s Loess Plateau between 1980 and 2008. Agric. Ecosyst. Environ. 2021, 322, 107636. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.-P.; Wang, L.-J.; Zhang, J.-C. Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Fraga, H.; Amraoui, M.; Malheiro, A.C.; Moutinho-Pereira, J.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. Eur. J. Remote Sens. 2014, 47, 753–771. [Google Scholar] [CrossRef]
- Ziyan, Z.; Meixia, L.; Zhuguo, M. Climate, hydrology and vegetation cover changes in the Yellow River source area and suggestions for countermeasures. J. Chin. Acad. Sci. 2020, 35, 61–72. [Google Scholar]
- Yuan, Z.; Xu, J.; Chen, J.; Wang, Y.; Yin, J. EVI Indicated Spatial-Temporal Variations in Vegetation and Their Responses to Climatic and Anthropogenic Factors in the Chinese Mainland Since 2000s. J. Environ. Inform. 2021. [Google Scholar] [CrossRef]
- Dong, H.; Guihua, Y.; Tingbin, Z.; Jiaqing, M.; Jingji, L.; Xiaojuan, B. Temporal and Spatial Characteristics of EVI and Its Response to Climatic Factors in Recent 16 years Based on Grey Relational Analysis in Inner Mongolia Autonomous Region, China. Remote Sens. 2018, 10, 961. [Google Scholar]
- Ghorbanian, A.; Mohammadzadeh, A.; Jamali, S. Linear and Non-Linear Vegetation Trend Analysis throughout Iran Using Two Decades of MODIS NDVI Imagery. Remote Sens. 2022, 14, 3683. [Google Scholar] [CrossRef]
- Hossain, M.L.; Li, J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob. Ecol. Conserv. 2021, 30, e01768. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Q.; Wang, C.; Yu, M. Spatiotemporal patterns of vegetation phenology change and relationships with climate in the two transects of East China. Glob. Ecol. Conserv. 2017, 10, 206–219. [Google Scholar] [CrossRef]
- Zhe, Y.; Yu, Z.; Feng, Z.; Xu, J.; Jun, Y. Spatial and temporal variation characteristics of NDVI and its response to hydrothermal conditions in the Yangtze River Basin. J. Chang. Acad. Sci. 2019, 36, 7–15. [Google Scholar]
- Gu, L.; Gong, Z.; Du, Y. Evolution characteristics and simulation prediction of forest and grass landscape fragmentation based on the “Grain for Green” projects on the Loess Plateau, P.R. China. Ecol. Indic. 2021, 131, 108240. [Google Scholar] [CrossRef]
- Yao, R.; Cao, J.; Wang, L.; Zhang, W.; Wu, X. Urbanization effects on vegetation cover in major African cities during 2001–2017. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 44–53. [Google Scholar] [CrossRef]
- Zhe, Y.; Denghua, Y.; Zhiyong, Y.; Jun, Y. Spatial and temporal variation of 400mm and 800mm isochrones in China from 1961 to 2010. Adv. Water Sci. 2014, 25, 494–502. [Google Scholar]
- Hao, W.; Denghua, Y.; Dayong, Q.; Jianhua, W. Spatial variation of 400mm isopycnals in the Yellow River basin over the past 50 years. Adv. Earth Sci. 2005, 649–655. [Google Scholar]
- Che, M.; Chen, B.; Innes, J.L.; Wang, G.; Dou, X.; Zhou, T.; Zhang, H.; Yan, J.; Xu, G.; Zhao, H. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 2014, 189–190, 81–90. [Google Scholar] [CrossRef]
- Tian, F.; Liu, L.-Z.; Yang, J.-H.; Wu, J.-J. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecol. Indic. 2021, 125, 107479. [Google Scholar] [CrossRef]
- Dossou, J.F.; Li, X.X.; Kang, H.; Boré, A. Impact of climate change on the Oueme basin in Benin. Glob. Ecol. Conserv. 2021, 28, e01692. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Sun, Y.; Liu, S.; Fu, Z. Multi-temporal characterization of land surface temperature and its relationships with normalized difference vegetation index and soil moisture content in the Yellow River Delta, China. Glob. Ecol. Conserv. 2020, 23, e01092. [Google Scholar] [CrossRef]
- Gan, Y.; Huang, X.; Li, S.; Liu, N.; Li, Y.C.; Freidenreich, A.; Wang, W.; Wang, R.; Dai, J. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta. J. Clean. Prod. 2019, 221, 98–107. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, C.C.; Wang, H.; Liu, W.; Qiang, X.; Xu, X.; Zheng, Z.; Hu, Y.; Zhou, Q.; Zhang, Y.; et al. Mid-late Holocene temperature and precipitation variations in the Guanting Basin, upper reaches of the Yellow River. Quat. Int. 2018, 490, 74–81. [Google Scholar] [CrossRef]
- Sun, C.; Chen, Y.; Li, J.; Chen, W.; Li, X. Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors. Atmos. Res. 2019, 227, 66–78. [Google Scholar] [CrossRef]
- Geng, S.; Shi, P.; Song, M.; Zong, N.; Zu, J.; Zhu, W. Diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecol. Indic. 2019, 104, 594–603. [Google Scholar] [CrossRef]
- Naboureh, A.; Li, A.; Ebrahimy, H.; Bian, J.; Azadbakht, M.; Amani, M.; Lei, G.; Nan, X. Assessing the effects of irrigated agricultural expansions on Lake Urmia using multi-decadal Landsat imagery and a sample migration technique within Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102607. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Chen, Z.; Xiong, Y.; Huang, Q.; Xu, X.; Huo, Z. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China. Agric. Water Manag. 2022, 260, 107277. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, C.; Wang, T.; Liu, L.; Zhang, X.; Yuan, Z.; Yang, S.; Chen, F. East-west asymmetry in the distribution of rainfall in the Chinese Loess Plateau during the Holocene. CATENA 2021, 207, 105626. [Google Scholar] [CrossRef]
- Yang, C.; Dang, H.; Zhou, X.; Zhang, H.; Wang, X.; Wang, Y.; Qiao, P.; Jiang, X.; Jian, Z. Upper ocean hydrographic changes in response to the evolution of the East Asian monsoon in the northern South China Sea during the middle to late Miocene. Glob. Planet. Chang. 2021, 201, 103478. [Google Scholar] [CrossRef]
- Hou, R. Numerical simulation and analysis of cloud microphysics structure of windward slope rainfall in Taihang Mountain. Sci. Meteorol. Sin. 2010, 30, 351–357. [Google Scholar]
- Huang, G.; Chen, Z. Research on critical rainfall of mountain torrent disasters based on effective antecedent rainfall. J. Nat. Disasters 2014, 23, 192–197. [Google Scholar]
- Montero-Martínez, G. The effect of altitude on the prediction of momentum for rainfall erosivity studies in Mexico. CATENA 2021, 207, 105604. [Google Scholar] [CrossRef]
- Manalebish Debalike, A.; Semu Mitiku, K.; Lungu, E.M.; Woldeamlak, B. Effects of temperature and rainfall in plant–herbivore interactions at different altitude. Ecol. Model. 2019, 406, 50–59. [Google Scholar] [CrossRef]
- Marin, R.J.; Velásquez, M.F.; García, E.F.; Alvioli, M.; Aristizábal, E. Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains. CATENA 2021, 206, 105563. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Li, Q.; Yang, J.; Li, L.; Wang, T. Impact of different microphysics and cumulus parameterizations in WRF for heavy rainfall simulations in the central segment of the Tianshan Mountains, China. Atmos. Res. 2020, 244, 105052. [Google Scholar] [CrossRef]
- Nian-Bing, Z.; Jun, Z.; Shu-Liang, F.; Hai-Yan, W.; Hong-Cheng, Z. Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China. J. Integr. Agric. 2021, 20, 1762–1774. [Google Scholar]
- Willard, D.A.; Donders, T.H.; Reichgelt, T.; Greenwood, D.R.; Sangiorgi, F.; Peterse, F.; Nierop KG, J.; Frieling, J.; Schouten, S.; Sluijs, A. Arctic vegetation, temperature, and hydrology during Early Eocene transient global warming events. Glob. Planet. Chang. 2019, 178, 139–152. [Google Scholar] [CrossRef]
- Lawal, S.; Lennard, C.; Hewitson, B. Response of southern African vegetation to climate change at 1.5 and 2.0° global warming above the pre-industrial level. Clim. Serv. 2019, 16, 100134. [Google Scholar] [CrossRef]
- Kawser, U.; Nath, B.; Hoque, A. Observing the influences of climatic and environmental variability over soil salinity changes in the Noakhali Coastal Regions of Bangladesh using geospatial and statistical techniques. Environ. Chall. 2022, 6, 100429. [Google Scholar] [CrossRef]
- Nachshon, U.; Levy, G.J. Soil salination processes and management. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Zhao, H.; Zhang, F.; Yu, Z.; Li, J. Spatiotemporal variation in soil degradation and economic damage caused by wind erosion in Northwest China. J. Environ. Manag. 2022, 314, 115121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Dang, H.; Tan, S.; Cheng, X.; Zhang, Q. Change in soil organic carbon following the ‘Grain-for-Green’ programme in China. Land Degrad. Dev. 2010, 21, 13–23. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J. Evaluation and comparison of growing season metrics in arid and semi-arid areas of northern China under climate change. Ecol. Indic. 2021, 121, 107055. [Google Scholar] [CrossRef]
- Fang, W.; Quansheng, G.; Qibiao, Y.; Huaxin, W.; Xinliang, X. Impacts of Land-use and Land-cover Changes on River Runoff in Yellow River Basin for Period of 1956–2012. Chin. Geogr. Sci. 2017, 27, 13–24. [Google Scholar]
- Wang, F.; Wang, Z.; Yang, H.; Zhao, Y. Study of the temporal and spatial patterns of drought in the Yellow River basin based on SPEI. Sci. China (Earth Sci.) 2018, 61, 1098–1111. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, T.; Zhang, Q.; Jin, H.; Li, E.; Li, Y.; Wu, Y.; Yang, Z. The Effects of Pre-Season Rainfall on the Phenology of Plants in the Rejuvenated Period. Int. J. Ecol. 2020, 9, 23–31. [Google Scholar] [CrossRef]
- Sun, C.; Hou, H.; Chen, W. Effects of vegetation cover and slope on soil erosion in the Eastern Chinese Loess Plateau under different rainfall regimes. PeerJ 2021, 9, e11226. [Google Scholar] [CrossRef]
- Yang, M.; Mou, Y.; Meng, Y.; Liu, S.; Peng, C.; Zhou, X. Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015. Sci. Total Environ. 2020, 711, 135139. [Google Scholar] [CrossRef]
- Caiqin, Z.; Jun, Z.; Jing, L.; Xiruo, L. Simulation and statistical analysis of plant growth characteristics of grassland based on cumulative temperature factor. Resour. Environ. Arid Reg. 2016, 30, 157–163. [Google Scholar]
Hydrothermal Conditions | Area Share of Different Ecosystems % | ||||
---|---|---|---|---|---|
Farmland | Forest | Grassland | Water Bodies and Wetland | Desert | |
Epr < 200 mm, At < 1500 °C | 0 | 0 | 0 | 0 | 0 |
Epr < 200 mm, 1500 °C ≤ At ≤ 3500 °C | 0.07 | 0 | 0.23 | 0.02 | 0.02 |
Epr < 200 mm, At > 3500 °C | 0.97 | 0.11 | 1.78 | 0.21 | 0.26 |
200 mm ≤ Epr ≤ 600 mm, At < 1500 °C | 0.10 | 1.12 | 8.44 | 0.54 | 0.01 |
200 mm ≤ Epr ≤ 600 mm, 1500 °C ≤ At ≤ 3500 °C | 9.49 | 4.12 | 20.30 | 0.80 | 0.95 |
200 mm ≤ Epr ≤ 600 mm, At > 3500 °C | 14.22 | 6.92 | 12.96 | 0.62 | 1.41 |
Epr > 600 mm, At < 1500 °C | 0 | 0.21 | 3.23 | 0.49 | 0 |
Epr > 600 mm, 1500 °C ≤ At ≤ 3500 °C | 0.28 | 0.16 | 0.17 | 0.02 | 0.04 |
Epr > 600 mm, At > 3500 °C | 0.80 | 0.72 | 0.37 | 0.05 | 0.14 |
Hydrothermal Conditions | Correlation Coefficients of EVI and Epr in Different Ecosystems | ||||
---|---|---|---|---|---|
Farmland | Forest | Grassland | Water Bodies and Wetland | Desert | |
Epr < 200 mm, At < 1500 °C | - | - | - | - | - |
Epr < 200 mm, 1500 °C ≤ At ≤ 3500 °C | - | - | - | - | - |
Epr < 200 mm, At > 3500 °C | 0.075 | - | 0.411 | - | - |
200 mm ≤ Epr ≤ 600 mm, At < 1500 °C | - | 0.126 | 0.185 | - | - |
200 mm ≤ Epr ≤ 600 mm, 1500 °C ≤ At ≤ 3500 °C | 0.404 | 0.273 | 0.408 | 0.158 | 0.294 |
200 mm ≤ Epr ≤ 600 mm, At >3500 °C | 0.199 | 0.147 | 0.324 | - | 0.116 |
Epr > 600 mm, At < 1500 °C | - | - | 0.146 | - | - |
Epr > 600 mm, 1500 °C ≤ At ≤ 3500 °C | - | - | - | - | - |
Epr > 600 mm, At > 3500 °C | 0.146 | - | - | - | - |
Hydrothermal Conditions | Correlation Coefficients of EVI and At in Different Ecosystems | ||||
---|---|---|---|---|---|
Farmland | Forest | Grassland | Water Bodies and Wetland | Desert | |
Epr < 200 mm, At < 1500 °C | - | - | - | - | - |
Epr < 200 mm, 1500 °C ≤ At ≤ 3500 °C | - | - | - | - | - |
Epr < 200 mm, At > 3500 °C | −0.069 | - | −0.158 | - | - |
200 mm ≤ Epr ≤ 600 mm, At < 1500 °C | - | 0.275 | 0.335 | - | - |
200 mm ≤ Epr ≤ 600 mm, 1500 °C ≤ At ≤ 3500 °C | 0.016 | 0.082 | 0.078 | 0.058 | −0.061 |
200 mm ≤ Epr ≤ 600 mm, At > 3500 °C | 0.102 | 0.136 | 0.079 | - | 0.022 |
Epr > 600 mm, At < 1500 °C | - | - | 0.225 | - | - |
Epr > 600 mm, 1500 °C ≤ At ≤ 3500 °C | - | - | - | - | - |
Epr > 600 mm, At > 3500 °C | 0.075 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; He, L.; Yin, J.; Yu, Z.; Liu, S.; Yan, D. Effects of Effective Precipitation and Accumulated Temperature on the Terrestrial EVI (Enhanced Vegetation Index) in the Yellow River Basin, China. Atmosphere 2022, 13, 1555. https://doi.org/10.3390/atmos13101555
Wang H, He L, Yin J, Yu Z, Liu S, Yan D. Effects of Effective Precipitation and Accumulated Temperature on the Terrestrial EVI (Enhanced Vegetation Index) in the Yellow River Basin, China. Atmosphere. 2022; 13(10):1555. https://doi.org/10.3390/atmos13101555
Chicago/Turabian StyleWang, Huiliang, Linpo He, Jun Yin, Zhilei Yu, Simin Liu, and Denghua Yan. 2022. "Effects of Effective Precipitation and Accumulated Temperature on the Terrestrial EVI (Enhanced Vegetation Index) in the Yellow River Basin, China" Atmosphere 13, no. 10: 1555. https://doi.org/10.3390/atmos13101555
APA StyleWang, H., He, L., Yin, J., Yu, Z., Liu, S., & Yan, D. (2022). Effects of Effective Precipitation and Accumulated Temperature on the Terrestrial EVI (Enhanced Vegetation Index) in the Yellow River Basin, China. Atmosphere, 13(10), 1555. https://doi.org/10.3390/atmos13101555