The Effect of Using a New Parameterization of Nucleation in the WRF-Chem Model on New Particle Formation in a Passive Volcanic Plume
Abstract
:1. Introduction
2. Materials and Methods
2.1. An Overview of the Case Study, Measurements and New Parameterization of Nucleation
2.2. Model Configuration
2.2.1. Domain Characteristics
2.2.2. Emissions
2.2.3. Aerosol Properties
2.2.4. Chemical Reactions
2.2.5. Model Experiments
2.3. Model Validation Method: Observations vs. Simulations
3. Results and Discussion
3.1. Sulfur Dioxide Concentrations
3.2. Sulfuric Acid Concentrations
3.2.1. Chemical Sources of Sulfuric Acid
3.2.2. Sulfuric Acid: NPF Gas Precursor
3.3. Impact of New Parameterization on Volcanic Newly-Formed Particles and Their Growth
- Secondary sulphate particles generated by the daytime oxidation of SO2 by the OH radical in the ambient air;
- Secondary aerosols that form immediately after emission from the vent by the oxidation of SO2 by volcanogenic OH.
3.4. Impact of NPN on CCN-Sized Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kerminen, V.M.; Chen, X.; Vakkari, V.; Petj, T.; Kulmala, M.; Bianchi, F. Atmospheric new particle formation and growth: Review of field observation. Environ. Res. Lett. 2018, 13, 103003. [Google Scholar] [CrossRef] [Green Version]
- Tsigaridis, K.; Krol, M.; Dentener, F.J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D.A.; Kanakidou, M. Change in global aerosol composition since preindustrial times. Atmos. Chem. Phys. 2006, 6, 5143–5162. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.V. Introduction to Atmospheric Chemistry; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Benkovitz, C.M.; Berkowitz, C.M.; Easter, R.C.; Nemesure, S.; Wagener, R.; Schwartz, S.E. Sulfate over the North Atlantic and adjacent continental regions: Evaluation for October and November 1986 using a three-dimensional model driven by observation-derived meteorology. J. Geophys. Res. 1994, 99, 20725–20756. [Google Scholar] [CrossRef]
- Tomasi, C.; Fuzzi, S.; Kokhanovsky, A. Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- McCormick, M.P.; Thomason, L.W.; Trepte, C.R. Atmospheric effects of the Mt Pinatubo eruption. Nature 1995, 373, 399–404. [Google Scholar] [CrossRef]
- Rizza, U.; Brega, E.; Teresa, M.; Castorina, G.; Morichetti, M.; Munaò, G.; Passerini, G.; Magazù, S. Analysis of the ETNA 2015 Eruption Using WRF–Chem Model and Satellite Observations. Atmosphere 2020, 11, 1168. [Google Scholar] [CrossRef]
- Barbet, C.; Deguillaume, L.; Chaumerliac, N.; Leriche, M.; Freney, E.; Colomb, A.; Sellegri, K.; Patryl, L.; Armand, P. Evaluation of Aerosol Chemical Composition Simulations by the WRF-Chem Model at the Puy de Dôme Station (France). Aerosol Air Qual. Res. 2016, 16, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Pauli Paasonen, P.; Asmi, A.; Petäjä, T.; Kajos, M.K.; Äijälä, M.; Junninen, H.; Holst, T.; Abbatt, J.P.D.; Arneth, A.; Birmili, W.; et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosci. 2013, 6, 438–442. [Google Scholar] [CrossRef]
- Twomey, S. Influence of pollution on shortwave Albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef] [Green Version]
- Bangert, M.; Kottmeier, C.; Vogel, B.; Vogel, H. Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model. Atmos. Chem. Phys. 2011, 11, 4411–4423. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.J.; Sherwood, S.C. Aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM. Geophys. Res. Lett. 2010, 37, L07702. [Google Scholar] [CrossRef] [Green Version]
- Glasow, R.V.; Bobrowski, N.; Kern, C. The effects of volcanic eruptions on atmospheric chemistry. Chem. Geol. 2009, 263, 131–142. [Google Scholar] [CrossRef]
- Kulmala, M.; Kerminen, V.-M. On the formation and growth of atmospheric nanoparticles. Atmos. Res. 2008, 90, 132–150. [Google Scholar] [CrossRef]
- Kulmala, M.; Pirjola, L.; Mäkelä, J. Stable sulphate clusters as a source of new atmospheric particles. Nature 2000, 404, 66–69. [Google Scholar] [CrossRef]
- Merikanto, J.; Spracklen, D.V.; Pringle, K.J.; Carslaw, K.S. Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000. Atmos. Chem. Phys. 2010, 10, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Rose, C.; Sellegri, K.; Moreno, I.; Velarde, F.; Ramonet, M.; Weinhold, K.; Krejci, R.; Andrade, M.; Wiedensohler, A.; Ginot, P.; et al. CCN production by new particle formation in the free troposphere. Atmos. Chem. Phys. 2017, 17, 1529–1541. [Google Scholar] [CrossRef] [Green Version]
- Yue, D.L.; Hu, M.; Zhang, R.Y.; Wu, Z.J.; Su, H.; Wang, Z.B.; Peng, J.F.; He, L.Y.; Huang, X.F.; Gong, Y.G.; et al. Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmos. Environ. 2011, 45, 6070–6077. [Google Scholar] [CrossRef]
- Dong, C.; Matsui, H.; Spak, S.; Kalafut-Pettibone, A.; Stanier, C. Impacts of New Particle Formation on Short-term Meteorology and Air Quality as Determined by the NPF-explicit WRF-Chem in the Midwestern United States. Aerosol. Air Qual. Res. 2019, 19, 204–220. [Google Scholar] [CrossRef]
- Brock, C.A.; Washenfelder, R.A.; Trainer, M.; Ryerson, T.B.; Wilson, J.C.; Reeves, J.M.; Huey, L.G.; Holloway, J.S.; Parrish, D.D.; Hübler, G.; et al. Particle growth in the plumes of coal fired power plants. J. Geophys. Res. 2002, 107, AAC-9. [Google Scholar] [CrossRef]
- Weber, R.J.; Lee, S.; Chen, G.; Wang, B.; Kapustin, V.; Moore, K.; Clarke, A.D.; Mauldin, L.; Kosciuch, E.; Cantrell, C.; et al. New particle formation in anthropogenic plumes advecting from Asia observed during TRACE-P. J. Geophys. Res. Atmos. 2003, 108, 8814. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Wiedensohler, A.; Fast, J.D.; Zaveri, R.A. Impact of new particle formation on the concentrations of aerosols and cloud condensation nuclei around Beijing. J. Geophys. Res. 2011, 116, D19208. [Google Scholar] [CrossRef]
- Lupascu, A.; Easter, R.; Zaveri, R.; Shrivastava, M.; Pekour, M.; Tomlinson, J.; Yang, Q.; Matsui, H.; Hodzic, A.; Zhang, Q.; et al. Modeling particle nucleation and growth over northern California during the 2010 CARES campaign. Atmos. Chem. Phys. 2015, 15, 12283–12313. [Google Scholar] [CrossRef] [Green Version]
- Matsui, H.; Koike, M.; Takegawa, N.; Kondo, Y.; Takami, A.; Takamura, T.; Yoon, S.; Kim, S.-W.; Lim, H.-C.; Fast, J.D. Spatial and temporal variations of new particle formation in East Asia using an NPF-explicit WRF-chem model: North-south contrast in new particle formation frequency. J. Geophys. Res. Atmos. 2013, 118, 11647–11663. [Google Scholar] [CrossRef]
- Kirkby, J.; Curtius, J.; Almeida, J.; Dunne, E.; Duplissy, J.; Ehrhart, S.; Franchin, A.; Gagné, S.; Ickes, L.; Kürten, A.; et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 2011, 476, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Hoyle, C.R.; Dada, L.; Stolzenburg, D.; Kürten, A.; Wang, M.; Lamkaddam, H.; Garmash, O.; Mentler, B.; Molteni, U.; et al. The driving factors of new particle formation and growth in the polluted boundary layer. Atmos. Chem. Phys. 2021, 21, 14275–14291. [Google Scholar] [CrossRef]
- Mather, T.A.; Pyle, D.M.; Oppenheimer, C. Tropospheric Volcanic Aerosol. In Volcanism and the Earth’s Atmosphere; American Geophysical Union: Washington, DC, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Surl, L. Modelling the Atmospheric Chemistry of Volcanic Plumes. Ph.D. Thesis, University of East Anglia, Norwich, UK, 2016. [Google Scholar]
- Zelenski, M.; Taran, Y.; Galle, B. High emission rate of sulfuric acid from Bezymianny volcano, Kamchatka. Geophys. Res. Lett. 2015, 42, 7005–7013. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.; Dayma, G.; Oppenheimer, C. Reaction Rates Control High-Temperature Chemistry of Volcanic Gases in Air. Front. Earth Sci. 2019, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Tulet, P.; Muro, A.D.; Colomb, A.; Denjean, C.; Duflot, V.; Arellano, S.; Foucart, B.; Brioude, J.; Sellegri, K.; Peltier, A.; Aiuppa, A. First results of the Piton de la Fournaise STRAP 2015 experiment: Multidisciplinary tracking of a volcanic gas and aerosol plume. Atmos. Chem. Phys. 2017, 17, 5355–5378. [Google Scholar] [CrossRef] [Green Version]
- Kroll, J.H.; Cross, E.S.; Hunter, J.F.; Pai, S.; Wallace, L.M.M.; Croteau, P.L.; Wallace, L.M.M.; Croteau, P.L.; Jayne, J.T.; Worsnop, D.R.; et al. Atmospheric evolution of sulfur emissions from Kı̅lauea: Real-time measurements of oxidation, dilution, and neutralization within a volcanic plume. Environ. Sci. Technol. 2015, 49, 4129–4137. [Google Scholar] [CrossRef]
- Mather, T.A. Volcanoes and the environment: Lessons for understanding Earth’s past and future from studies of present-day volcanic emissions. J. Volcanol. Geotherm. Res. 2015, 304, 160–179. [Google Scholar] [CrossRef] [Green Version]
- Sahyoun, M.; Freney, E.; Brito, J.; Duplissy, J.; Gouhier, M.; Colomb, A.; Dupuy, R.; Bourianne, T.; Nowak, J.B.; Yan, C.; et al. Evidence of new particle formation within Etna and Stromboli volcanic plumes and its parametrization from airborne in-situ measurements. J. Geophys. Res. Atmos. 2019, 124, 5650–5668. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Yu, F. Microphysical Modeling of New Particle Formation and Growth in Tropospheric Volcanic Plumes. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 10–14 December 2007. Abstract id. A13A-0882. [Google Scholar]
- Boulon, J.; Sellegri, K.; Hervo, M.; Laj, P. Observations of nucleation of new particles in a volcanic plume. Proc. Natl. Acad. Sci. USA 2011, 108, 12223–12226. [Google Scholar] [CrossRef] [Green Version]
- Foucart, B.; Sellegri, K.; Tulet, P. New Particle Formation (NPF) within the volcanic plume of Piton de la Fournaise at Maïdo observatory (21.1° S 55.4° E), on La Réunion Island. In Proceedings of the Geophysical Research Abstracts (EGU General Assembly 2017), Vienna, Austria, 23–28 April 2017; Volume 19. [Google Scholar]
- Boulon, J.; Sellegri, K.; Hervo, M.; Picard, D.; Pichon, J.-M.; Fréville, P.; Laj, P. Investigation of nucleation events vertical extent: A long-term study at two different altitude sites. Atmos. Chem. Phys. 2011, 11, 5625–5639. [Google Scholar] [CrossRef] [Green Version]
- Rose, C.; Foucart, B.; Picard, D.; Colomb, A.; Metzger, J.-M.; Tulet, P.; Sellegri, K. New particle formation in the volcanic eruption plume of the Piton de la Fournaise: Specific features from a long-term dataset. Atmos. Chem. Phys. 2019, 19, 13243–13265. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Aliaga, D.; Zha, Q.; Heikkinen, L.; Andrade, M.; Kulmala, M.T.; Mohr, C. The influence of volcano activity on new particle formation over the Andes. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 9–13 December 2019; Volume 2019. [Google Scholar]
- Spracklen, D.V.; Pringle, K.J.; Carslaw, K.S.; Chipperfield, M.P.; Mann, G.W. A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties. Atmos. Chem. Phys. 2005, 5, 2227–2252. [Google Scholar] [CrossRef] [Green Version]
- Spracklen, D.V.; Pringle, K.J.; Carslaw, K.S.; Chipperfield, M.P.; Mann, G.W. A global off-line model of size resolved aerosol microphysics: II. Identification of key uncertainties. Atmos. Chem. Phys. 2005, 5, 3233–3250. [Google Scholar] [CrossRef] [Green Version]
- Mann, G.W.; Carslaw, K.S.; Spracklen, D.V.; Ridley, D.A.; Manktelow, P.T.; Chipperfield, M.P.; Pickering, S.J.; Johnson, C.E. Description and evaluation of GLOMAP-mode: A modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model. Dev. 2010, 3, 519–551. [Google Scholar] [CrossRef] [Green Version]
- Bellouin, N.; Mann, G.W.; Woodhouse, M.T.; Johnson, C.; Carslaw, K.S.; Dalvi, M. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmos. Chem. Phys. 2012, 12, 21437–21479. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Laaksonen, A.; Pirjola, L. Parameterizations for sulphric acid/water nucleation rates. J. Geophys. Res. Atmos. 1998, 103, 8301–8308. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Carslaw, K.S.; Mann, G.W.; Rap, A.; Pringle, K.J.; Spracklen, D.V.; Wilson, M.; Forster, P.M. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. Atmos. Chem. Phys. 2012, 12, 7321–7339. [Google Scholar] [CrossRef] [Green Version]
- Lac, C.; Chaboureau, J.P.; Masson, V.; Pinty, J.P.; Tulet, P.; Escobar, J.; Leriche, M.; Barthe, C.; Aouizerats, B.; Augros, C.; Aumond, P. Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model. Dev. 2018, 11, 1929–1969. [Google Scholar] [CrossRef] [Green Version]
- Maattanen, A.; Merikanto, J.; Henschel, H.; Duplissy, J.; Makkonen, R.; Ortega, I.K.; Vehkamki, H. New parameterizations for neutral and ion-induced sulfuric acid-water particle formation in nucleation and kinetic regimes. J. Geophys. Res. Atmos. 2018, 123, 1269–1296. [Google Scholar] [CrossRef]
- Pianezze, J.; Tulet, P.; Foucart, B.; Leriche, M.; Liuzzo, M.; Salerno, G.; Colomb, A.; Freney, E.; Sellegri, K. Volcanic plume aging during passive degassing and low eruptive events of Etna and Stromboli volcanoes. J. Geophys. Res. Atmos. 2019, 124, 11389–11405. [Google Scholar] [CrossRef]
- Wexler, A.S.; Lurmann, F.W.; Seinfeld, J.H. Modelling urban and regional aerosols-I. Model development. Atmos. Environ. 1994, 28, 531–546. [Google Scholar] [CrossRef]
- Napari, I.; Noppel, M.; Vehkama¨ki, H.; Kulmala, M. Parametrization of ternary nucleation rates for H2SO4-NH3-H2O vapors. J. Geophys. Res. 2002, 107, 4381. [Google Scholar] [CrossRef]
- Napari, I.; Noppel, M.; Vehkama¨ki, H.; Kulmala, M. An improved model for ternary nucleation of sulfuric acid-ammonia-water. J. Chem. Phys. 2002, 116, 4221–4227. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, X.; Wang, K.; Zhang, Y.; Wang, L.; Zhang, Q.; Duan, F.; He, K.; Yu, S.-C. Incorporation of new particle formation and early growth treatments into WRF/Chem: Model improvement, evaluation, and impacts of anthropogenic aerosols over East Asia. Atmos. Environ. 2016, 124, 262–284. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Khalizov, A.; Wang, L.; Hu, M.; Xu, W. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 2012, 112, 957–2011. [Google Scholar] [CrossRef]
- Wang, M.; Penner, J.E. Aerosol indirect forcing in a global model with particle nucleation. Atmos. Chem. Phys. 2009, 9, 239–260. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Briegleb, B.P.; Bitz, C.M.; Lin, S.J.; Zhang, M.H. The formulation and atmospheric simulation of the community atmosphere model version 3 (cam3). J. Clim. 2006, 19, 2144–2161. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Penner, J.E.; Herzog, M. Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res. 2005, 110, D18206. [Google Scholar] [CrossRef] [Green Version]
- Spracklen, D.V.; Carslaw, K.S.; Merikanto, J.; Mann, G.W.; Reddington, C.L.; Pickering, S.; Ogren, J.A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; et al. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmos. Chem. Phys. 2010, 10, 4775–4793. [Google Scholar] [CrossRef] [Green Version]
- Makkonen, R.; Asmi, A.; Korhonen, H.; Kokkola, H.; Jarvenoja, S.; Räisänen, P.; Lehtinen, K.E.J.; Laaksonen, A.; Kerminen, V.-M.; Jarvinen, H.; et al. Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model. Atmos. Chem. Phys. 2009, 9, 1747–1766. [Google Scholar] [CrossRef] [Green Version]
- Westervelt, D.M.; Pierce, J.R.; Riipinen, I.; Trivitayanurak, W.; Hamed, A.; Kulmala, M.; Laaksonen, A.; Decesari, S.; Adams, P.J. Formation and growth of nucleated particles into cloud condensation nuclei: Model–measurement comparison. Atmos. Chem. Phys. 2013, 13, 7645–7663. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Lehtinen, K.E.J.; Laaksonen, A. Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmos. Chem. Phys. 2006, 6, 787–793. [Google Scholar] [CrossRef] [Green Version]
- Sihto, S.-L.; Kulmala, M.; Kerminen, V.-M.; Dal Maso, M.; Petäjä, T.; Riipinen, I.; Korhonen, H.; Arnold, F.; Janson, R.; Boy, M.; et al. Atmospheric sulphuric acid and aerosol formation: Implications from atmospheric measurements for nucleation and early growth mechanisms. Atmos. Chem. Phys. 2006, 6, 4079–4091. [Google Scholar] [CrossRef] [Green Version]
- Kuang, C.; McMurry, P.H.; McCormick, A.V.; Eisele, F.L. Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Wang, X.; Boselli, A.; D’Avino, L.; Pisani, G.; Spinelli, N.; Amodeo, A.; Chaikovsky, A.; Wiegner, M.; Nickovic, S.; Papayannis, A.; et al. Volcanic dust characterization by EARLINET during Etna’s eruptions in 2001–2002. Atmos. Environ. 2008, 42, 893–905. [Google Scholar] [CrossRef]
- Diehl, T.; Heil, A.; Chin, M.; Pan, X.; Streets, D.; Schultz, M.; Kinne, S. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos. Chem. Phys. 2012, 12, 24895–24954. [Google Scholar] [CrossRef] [Green Version]
- Tanguy, J.C.; Condomines, M.; Le Goff, M.; Chillemi, V.; La Delfa, S.; Patanè, G. Mount Etna eruptions of the last 2750 years: Revised chronology and location through archeomagnetic and 226Ra-230Th dating. Bull. Volcanol. 2007, 70, 55–83. [Google Scholar] [CrossRef]
- Calvari, S.; Salerno, G.G.; Spampinato, L.; Gouhier, M.; la Spina, A.; Pecora, E.; Harris, A.J.L.; Labazuy, E.; Boschi, B.E. An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode. J. Geophys. Res. 2011, 116, B11207. [Google Scholar] [CrossRef]
- Kupc, A.; Bischof, O.; Tritscher, T.; Beeston, M.; Krinke, T.; Wagner, P.E. Laboratory Characterization of a New Nano-Water- Based CPC 3788 and Performance Comparison to an Ultrafine Butanol-Based CPC 3776 Laboratory Characterization of a New Nano-Water-Based CPC 3788 and Performance Comparison to an Ultrafine Butanol-Based CPC 3. Aerosol Sci. Technol. 2013, 47, 183–191. [Google Scholar] [CrossRef]
- Weigel, R.; Hermann, M.; Curtius, J.; Voigt, C.; Walter, S.; Böttger, T.; Lepukhov, B.; Belyaev, G.; Borrmann, S. Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application. Atmos. Meas. Tec. 2009, 2, 243–258. [Google Scholar] [CrossRef] [Green Version]
- Junninen, H.; Ehn, M.; Petäjä, T.; Luosujärvi, L.; Kotiaho, T.; Kostiainen, R.; Rohner, U.; Gonin, M.; Fuhrer, K.; Kulmala, M.; et al. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 2010, 3, 1039–1053. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Climate Change Service (C3S): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 10 December 2020).
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model. Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Hong, S.Y.; Yign, N.; Jimy, D. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land-surface/ hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J.I. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. Climatol. 2012, 51, 300–316. [Google Scholar] [CrossRef] [Green Version]
- Kain, S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Carter, W. A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds. Atmos. Environ. 1990, 24, 481–518. [Google Scholar] [CrossRef]
- Madronich, S. Photo dissociation in the atmosphere: 1. Actinic flux and the effect of ground reflections and clouds. J. Geophys. Res. 1987, 92, 9740–9752. [Google Scholar] [CrossRef]
- Stuefer, M.; Freitas, S.R.; Grell, G.; Webley, P.; Peckham, S.; McKeen, S.A.; Egan, S.D. Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: Development and some applications. Geosci. Model. Dev. 2013, 6, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Egan, S.D.; Stuefer, M.; Webley, P.W.; Cahill, C.F. WRF-Chem modeling of sulfur dioxide emissions from the 2008 Kasatochi Volcano. Ann. Geophys. 2014, 57, 1–6. [Google Scholar] [CrossRef]
- Egan, S.D.; Stuefer, M.; Webley, P.W.; Lopez, T.; Cahill, C.F.; Hirtl, M. Modeling volcanic ash aggregation processes and related impacts on the April–May 2010 eruptions of Eyjafjallajökull volcano with WRF-Chem. Nat. Hazards Earth Syst. Sci. 2020, 20, 2721–2737. [Google Scholar] [CrossRef]
- Hirtl, M.; Scherllin-Pirscher, B.; Stuefer, M.; Arnold, D.; Baro, R.; Maurer, C.; Mulder, M.D. Extension of the WRF-Chem volcanic emission preprocessor to integrate complex source terms and evaluation for different emission scenarios of the Grimsvötn 2011 eruption. Nat. Hazards Earth Syst. Sci. 2020, 20, 3099–3115. [Google Scholar] [CrossRef]
- Hirtl, M.; Stuefer, M.M.; Arnold, D.; Grell, G.; Maurer, C.; Natali, S.; Scherllin-Pisher, B.; Webley, P. The effects of simulating volcanic aerosol radiative feedbacks with WRF-Chem during the Eyjafjallajökull eruption, April and May 2010. Atmos. Environ. 2019, 198, 194–206. [Google Scholar] [CrossRef]
- Steensen, T.; Stuefer, M.; Webley, P.; Grell, G.; Freitas, S. Qualitative comparison of Mount Redoubt 2009 volcanic clouds using the PUFF and WRF-Chem dispersion models and satellite remote sensing data. J. Volcanol. Geotherm. Res. 2013, 259, 235–247. [Google Scholar] [CrossRef]
- Georgiou, G.K.; Christoudias, T.; Proestos, Y.; Kushta, J.; Hadjinicolaou, P.; Lelieveld, J. Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: Chemistry and aerosol mechanism intercomparison. Atmos. Chem. Phys. 2018, 18, 1555–1571. [Google Scholar] [CrossRef] [Green Version]
- Mastin, L.G.; Guffanti, M.; Servranckx, R.; Webley, P.; Barsotti, S.; Dean, K.; Durant, A.; Ewert, J.W.; Neri, A.; Rose, W.I.; Schneider, D. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 2009, 186, 10–21. [Google Scholar] [CrossRef]
- Aiuppa, A.; Giudice, G.; Gurrieri, S.; Liuzzo, M.; Burton, M.; Caltabiano, T.; McGonigle, A.J.S.; Salerno, H.; Shinohara, H.; Valenza, M. Total volatile flux from Mount Etna. J. Geophys. Res. 2008, 35, 12809–12819. [Google Scholar] [CrossRef]
- Roberts, T.J.; Vignelles, D.; Liuzzo, M.; Giudice, G.; Aiuppa, A.; Coltelli, M.; Salerno, G.; Chartier, M.; Coute, B.; Berthet, G.; et al. The primary volcanic aerosol emission from Mt Etna: Size-resolved particles with SO2 and role in plume reactive halogen chemistry. Geochim. Cosmochim. Acta. 2018, 222, 74–93. [Google Scholar] [CrossRef] [Green Version]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Shrivastava, M.; Fast, J.; Easter, R.; Gustafson, W.I.; Zaveri, R.A.; Jimenez, J.L.; Saide, P.; Hodzic, A. Modeling s in a megacity: Comparison of simple and complex representations of the volatility basis set approach. Atmos. Chem. Phys. 2011, 11, 6639–6662. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, M.; Easter, R.C.; Liu, X.; Zelenyuk, A.; Singh, B.; Zhang, K.; Ma, P.-L.; Chand, D.; Ghan, S.; Jimenez, J.L.; et al. Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions. J. Geophys. Res. Atmos. 2015, 120, 4169–4195. [Google Scholar] [CrossRef] [Green Version]
- Galeazzo, T.; Bekki, S.; Martin, E.; Savarino, J.; Arnold, S.R. Photochemical box modelling of volcanic SO2 oxidation: Isotopic constraints. Atmos. Chem. Phys. 2018, 18, 17909–17931. [Google Scholar] [CrossRef] [Green Version]
- Berndt, T.; Böge, O.; Stratmann, F.; Heintzenberg, J.; Kulmala, M. Rapid Formation of Sulfuric Acid Particles at Near-Atmospheric Conditions. Science 2005, 307, 698–700. [Google Scholar] [CrossRef]
- Calvert, J.G.; Su, F.; Bottenheim, J.W.; Strausz, O.P. Mechanism of the homogeneous oxidation of sulfur dioxide in the troposphere. Atmos. Environ. 1967, 12, 197–226. [Google Scholar] [CrossRef]
- Chen, Q.; Schmidt, J.A.; Shah, V.; Jaeglé, L.; Sherwen, T.; Alexander, B. Sulfate production by reactive bromine: Implications for the global sulfur and reactive bromine budgets. Geophys. Res. Lett. 2017, 44, 7069–7078. [Google Scholar] [CrossRef] [Green Version]
- Brodowsky, C.V.; Sukhodolov, T.; Feinberg, A.; Höpfner, M.; Peter, M.; Stenke, A.; Rozanov, E. Modeling the Sulfate Aerosol Evolution after Recent Moderate Volcanic Activity, 2008-2012. J. Geophys. Res. Atmos. 2021, 126, e2021JD035472. [Google Scholar] [CrossRef]
- Timmreck, C.; Mann, G.W.; Aquila, V.; Hommel, R.; Lee, L.A.; Schmidt, A.; Brühl, C.; Carn, S.; Chin, M.; Dhomse, S.S.; et al. The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): Motivation and experimental design. Geosci. Model. Dev. 2018, 11, 2581–2608. [Google Scholar] [CrossRef] [Green Version]
- Sha, T.; Ma, X.; Jia, H.; Tian, R.; Chang, Y.; Cao, F.; Zhang, Y. Aerosol chemical component: Simulations with WRF-Chem and comparison with observations in Nanjing. Atmos. Environ. 2019, 218, 116982. [Google Scholar] [CrossRef]
- Tuccella, P.; Curci, G.; Visconti, G.; Bessagnet, B.; Menut, L.; Park, R.J. Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Burton, M.R.; Sawyer, G.M.; Granieri, D. Deep Carbon Emissions from Volcanoes. Rev. Mineral. Geochem. 2013, 75, 323–354. [Google Scholar] [CrossRef] [Green Version]
- Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S.; Liuzzo, M.; Shinohara, H.; Favara, R.; Valenza, M. Rates of carbon dioxide plume degassing from Mount Etna volcano. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Franco, A.; Giudice, G.; Gurrieri, S.; Inguaggiato, S.; Liuzzo, M.; McGonigle, A.J.S.; Valenza, M. Emission of bromine and iodine from Mount Etna volcano. Geophys. Geosystems. 2005, 6. [Google Scholar] [CrossRef] [Green Version]
- Bobrowski, N.; Hönninger, G.; Galle, B.; Platt, U. Detection of bromine monoxide in a volcanic plume. Nature 2003, 423, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.J.; Martin, R.S.; Jourdain, L. Reactive bromine chemistry in Mount Etna’s volcanic plume: The influence of total Br, high-temperature processing, aerosol loading and plume-air mixing. Atmos. Chem. Phys. 2014, 14, 11201–11219. [Google Scholar] [CrossRef] [Green Version]
- Gutmann, A.; Bobrowski, N.; Roberts, T.J.; Rüdiger, J.; Hoffmann, T. Advances in Bromine Speciation in Volcanic Plumes. Front. Earth Sci. 2018, 6, 213. [Google Scholar] [CrossRef]
- Surl, L.; Roberts, T.J.; Bekki, S. Observation and modelling of ozone-destructive halogen chemistry in a passive degassing volcanic plume. Atmos. Chem. Phys. 2021, 21, 12413–12441. [Google Scholar] [CrossRef]
- Gliß, J.; Bobrowski, N.; Vogel, L.; Pöhler, D.; Platt, U. OClO and BrO observations in the volcanic plume of Mt. Etna—Implications on the chemistry of chlorine and bromine species in volcanic plumes. Atmos. Chem. Phys. 2015, 15, 5659–5681. [Google Scholar] [CrossRef] [Green Version]
- Surl, L.; Donohoue, D.; Aiuppa, A.; Bobrowski, N.; von Glasow, R. Quantification of the depletion of ozone in the plume of Mount Etna. Atmos. Chem. Phys. 2015, 15, 2613–2628. [Google Scholar] [CrossRef] [Green Version]
- Kelly, P.J.; Kern, C.; Roberts, T.J.; Lopez, T.; Werner, C.; Aiuppa, A. Rapid chemical evolution of tropospheric volcanic emissions from Redoubt Volcano, Alaska, based on observations of ozone and halogen containing gases. J. Volcanol Geotherm Res. 2013, 259, 317–333. [Google Scholar] [CrossRef]
- Rinaldi, M.; Emblico, L.; Decesari, S.; Fuzzi, S.; Facchini, M.C.; Librando, V. Chemical Characterization and Source Apportionment of Size-Segregated Aerosol Collected at an Urban Site in Sicily. Water Air Soil Pollut. 2007, 185, 311–321. [Google Scholar] [CrossRef]
- Tomasi, C.; Lupi, A. Primary and Secondary Sources of Atmospheric Aerosol, In Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate; Wiley-VCH: Hoboken, NJ, USA, 2016; pp. 1–86. [Google Scholar]
- Berndt, T.; Böge, O.; Stratmann, F. Atmospheric H2SO4/H2O Particle Formation: Mechanistic Investigations, In Nucleation and Atmospheric Aerosols; O’Dowd, C.D., Wagner, P.E., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Weber, R.J.; Chen, G.; Davis, D.D.; Mauldin, R.L.; Tanner, D.J.; Eisele, F.L.; Clarke, A.D.; Thornton, D.C.; Bandy, A.R. Measurements of enhanced H2SO4 and 3–4 nm particles near a frontal cloud during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. Atmos. 2001, 106, 24107–24117. [Google Scholar] [CrossRef]
- Asmi, E.; Freney, E.; Hervo, M.; Picard, D.; Rose, C.; Colomb, A.; Sellegri, K. Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France. Atmos. Chem. Phys. 2012, 12, 11589–11607. [Google Scholar] [CrossRef] [Green Version]
- Schmale, J.; Henning, S.; Decesari, S.; Henzing, B.; Keskinen, H.; Sellegri, K.; Ovadnevaite, J.; Pöhlker, M.L.; Brito, J.; Bougiatioti, A.; et al. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmos. Chem. Phys. 2018, 18, 2853–2881. [Google Scholar] [CrossRef] [Green Version]
- Kerminen, V.M.; Paramonov, M.; Anttila, T.; Riipinen, I.; Fountoukis, C.; Korhonen, H.; Asmi, E.; Laakso, L.; Lihavainen, H.; Swietlicki, E.; et al. Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis based on existing literature and new results. Atmos. Chem. Phys. 2012, 12, 12037–12059. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A. Modelling Tropospheric Volcanic Aerosol, From Aerosol Microphysical Processes to Earth System Impacts; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- O’Dowd, C.D.; Hoffmann, T. Coastal New Particle Formation: A Review of the Current State-Of-The-Art. Environ. Chem. 2005, 2, 245–255. [Google Scholar] [CrossRef]
- Manktelow, P.T.; Carslaw, K.S.; Mann, G.W.; Spracklen, D.V. Variable CCN formation potential of regional sulfur emissions. Atmos. Chem. Phys. 2009, 9, 3253–3259. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Tong, D.Q.; Yang, K.; Lee, P.; Baker, B.; Crawford, A.; Luke, W.; Stein, A.; Campbell, P.C.; Ring, A.; et al. Air quality impacts of the 2018 Mt. Kilauea Volcano eruption in Hawaii: A regional chemical transport model study with satellite-constrained emissions. Atmos. Environ. 2020, 237, 117648. [Google Scholar] [CrossRef]
- Graf, H.F.; Herzog, M.; Oberhuber, J.M.; Textor, C. Effect of environmental conditions on volcanic plume rise. J. Geophys. Res. 1999, 104, 24309–24320. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Luo, G.; Bates, T.S.; Anderson, B.; Clarke, A.; Kapustin, V.; Yantosca, R.M.; Wang, Y.; Wu, S. Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms. J. Geophys. Res. 2010, 115, D17205. [Google Scholar] [CrossRef]
- Schmidt, A.; Carslaw, K.; Mann, G.; Merikanto, J. The impact of time-averaged volcanic sulfur emissions on the global cloud condensation nuclei budget in the pre-industrial era. In Proceedings of the EGU General Assembly 2010, Vienna, Austria, 2–7 May 2010. [Google Scholar]
- Breen, K.H.; Barahona, D.; Yuan, T.; Bian, H.; James, S.C. Effect of volcanic emissions on clouds during the 2008 and 2018 Kilauea degassing events. Atmos. Chem. Phys. 2021, 21, 7749–7771. [Google Scholar] [CrossRef]
- Mills, M.J.; Schmidt, A.; Easter, R.; Solomon, S.; Kinnison, D.E.; Ghan, S.J.; Neely, R.R., III; Marsh, D.R.; Conley, A.; Bardeen, G.G.; et al. Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). J. Geophys. Res. Atmos. 2016, 121, 2332–2348. [Google Scholar] [CrossRef] [Green Version]
- Flower, V.J.; Kahn, R.A. The evolution of icelandic volcano emissions, as observed from space in the era of NASA’s earth observing system (EOS). J. Geophys. Res. Atmos. 2020, 125, e2019JD031625. [Google Scholar] [CrossRef]
- Gassó, S. Satellite observations of the impact of weak volcanic activity on marine clouds. J. Geophys. Res. Atmos. 2008, 113, D14S19. [Google Scholar] [CrossRef] [Green Version]
- Pirjola, L.; Kulmala, M.; Wilck, M.; Bischoff, A.; Strat-mann, F.; Otto, E. Formation of sulphuric acid aerosols and cloud condensation nuclei: An expression for significant nucleation and model comprarison. J. Aerosol Sci. 1999, 30, 1079–1094. [Google Scholar] [CrossRef]
13 June 2016 (00:00 UTC)–15 June 2016 (13:00 UTC) 2 days spin-up (13 June 13 (00:00 UTC) to 15 June (00:00 UTC)) | |
---|---|
Horizontal spacing (grid points)Vertical spacing | d01: 9 km (223 × 223), d02: 3 km (232 × 256), d03: 1 km (385 × 304) 72 full Eta levels/Model top level: 50 mb |
Time steps | Meteorology (seconds): 45 (d01), 15 (d02), 5 (d03); Chemistry: 5 min; Photolysis: 30 min |
Microphysics | Morrison 2 moment scheme [76] |
Radiation | Long Wave: RRTM [77]; Short Wave: Dudhia scheme [78] |
Planetary Boundary Layer | Yonsei University scheme [79] |
Land Surface Model | Noah Land Surface Model [80] |
Surface Layer | Revised MM5 Monin–Obukhov scheme [81] |
Cumulus parameterization | Kain -Fritsch (new Eta) scheme [82] only for domain 1 |
Aerosol model | Developed MOSAIC scheme (12 bins aerosol size distribution; see Table 2) |
Gas-phase Chemistry | SAPRC99 [83]; no aqueous phase chemistry |
Photolysis | Madronich F-TUV [84] |
Initial condition (meteorology) Initial condition (chemistry) | ERA5 (forcing every 6 h) MOZART-4 [75] |
Model Experiments | NO-VOLCANO: does not include volcano-related SO2 flux S1. Activated-type parameterization (JS1 = 2.0 × 10−6 × [H2SO4]) S2. New parameterization of nucleation (JS2 = 1.844 × 10−8 × (H2SO4)1.12) |
Observation (ETNA13) [37] | Date: 15 June 2016 Take-off—landing time (UTC): 10:43–11:17 Latitude: 37.651 N–37.868 N Longitude: 14.969 E–15.515E Altitude range (m): 1917–3625 (free troposphere) |
Modified 12 Sectional Aerosol Bins (1 nm–10 µm) | Observations | Name (Unit) | |||
---|---|---|---|---|---|
Bin | Lower Edge Diameter (µm) | Upper Edge Diameter (µm) | Center (µm) | ||
01 | 1.0 × 10−3 (1.0 nm) | 2.15 × 10−3 (2.15 nm) | 1.47 × 10−3 | - | |
02 | 2.15 × 10−3 (2.15 nm) | 4.64 × 10−3 (4.64 nm) | 3.16 × 10−3 | ~2.5 nm < dp < 10 nm | N2.5-10 (cm−3) |
03 | 4.64 × 10−3 (4.64 nm) | 1.00 × 10−2 (10 nm) | 6.81 × 10−3 | ||
04 | 1.0 × 10−2 | 2.15 × 10−2 | 1.47 × 10−2 | 10 nm < dp < 100 nm | N10-100 (cm−3) |
05 | 2.15 × 10−2 | 4.64 × 10−2 | 3.16 × 10−2 | ||
06 | 4.64 × 10−2 | 0.100000009 | 6.81 × 10−2 | ||
07 | 0.100000009 | 0.215443417 | 0.14678 | ~100 nm < dp < 200 nm | N100-200 (cm−3) |
08 | 0.215443417 | 0.464158833 | 0.316228 | 200 nm < dp < 400 nm | |
09 | 0.464158833 | 1.00000012 | 0.681292 | 400 nm < dp < 1 µm | |
10 | 1.00000012 | 2.15443444 | 1.467799 | 1 µm < dp < 2 µm | |
11 | 2.15443444 | 4.64158869 | 3.162277 | 2µm < dp < 3 µm | |
12 | 4.64158869 | 10 | 6.812921 | - |
SO2 (ppbv) (Approach 1) | H2SO4 (Molecules cm−3) (Approach 1) | H2SO4 (Molecules cm−3) (Approach 2) | |||||||
---|---|---|---|---|---|---|---|---|---|
OBS | S1 | S2 | OBS (×108) | S1 (×108) | S2 (×108) | S1 (×108) | S2 (×108) | ||
Mean | 21.30 | 15.93 | 16.92 | 3.34 | 6.60 | 7.79 | 3.20 | 3.38 | |
Q1 | 5.26 | 3.96 | 4.82 | 1.43 | 3.48 | 3.71 | 1.58 | 1.58 | |
Median | 12.75 | 12.25 | 13.14 | 3.71 | 5.72 | 6.46 | 3.85 | 3.85 | |
Q3 | 26.05 | 21.64 | 22.50 | 4.93 | 7.14 | 9.12 | 4.73 | 5.23 | |
Max | 92.41 | 110.88 | 106.74 | 6.78 | 28.5 | 31.7 | 5.55 | 6.98 | |
Min | 1.36 | 0.15 | 0.15 | 0.86 | 0.31 | 0.31 | 0.34 | 0.35 | |
~2.5–10 nm sized particles (cm−3) (Approach 2) | 10–100 nm sized particles (cm−3) (Approach 2) | ~100–200 nm sized particles (cm−3) (Approach 2) | |||||||
OBS (×103) | S1 (×103) | S2 (×103) | OBS (×103) | S1 (×103) | S2(×103) | OBS | S1 | S2 | |
Mean | 5.78 | 17.67 | 7.43 | 6.83 | 20.63 | 15.73 | 831.29 | 569.38 | 599.69 |
Q1 | 0.49 | 6.39 | 2.86 | 0.69 | 5.61 | 4.14 | 582.66 | 511.11 | 521.50 |
Median | 1.21 | 11.21 | 5.79 | 2.09 | 19.75 | 14.52 | 929.71 | 559.42 | 589.95 |
Q3 | 6.08 | 40.0 | 11.17 | 10.07 | 31.17 | 25.57 | 1189.22 | 608.39 | 672.56 |
Max | 95.50 | 93.40 | 26.46 | 31.33 | 64.32 | 39.72 | 2200.74 | 802.16 | 851.53 |
Min | 0.00113 | 0.037 | 0.003 | 0.13 | 2.47 | 2.42 | 19.36 | 430.86 | 437.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arghavani, S.; Rose, C.; Banson, S.; Lupascu, A.; Gouhier, M.; Sellegri, K.; Planche, C. The Effect of Using a New Parameterization of Nucleation in the WRF-Chem Model on New Particle Formation in a Passive Volcanic Plume. Atmosphere 2022, 13, 15. https://doi.org/10.3390/atmos13010015
Arghavani S, Rose C, Banson S, Lupascu A, Gouhier M, Sellegri K, Planche C. The Effect of Using a New Parameterization of Nucleation in the WRF-Chem Model on New Particle Formation in a Passive Volcanic Plume. Atmosphere. 2022; 13(1):15. https://doi.org/10.3390/atmos13010015
Chicago/Turabian StyleArghavani, Somayeh, Clémence Rose, Sandra Banson, Aurelia Lupascu, Mathieu Gouhier, Karine Sellegri, and Céline Planche. 2022. "The Effect of Using a New Parameterization of Nucleation in the WRF-Chem Model on New Particle Formation in a Passive Volcanic Plume" Atmosphere 13, no. 1: 15. https://doi.org/10.3390/atmos13010015
APA StyleArghavani, S., Rose, C., Banson, S., Lupascu, A., Gouhier, M., Sellegri, K., & Planche, C. (2022). The Effect of Using a New Parameterization of Nucleation in the WRF-Chem Model on New Particle Formation in a Passive Volcanic Plume. Atmosphere, 13(1), 15. https://doi.org/10.3390/atmos13010015