Triggering Mechanism of Extreme Wind over the Complex Mountain Area in Dali Region on the Yunnan-Guizhou Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Wind Scale Standard
2.2.2. Statistic Methods
2.2.3. WRF Model Set-Up and Calibrations
Options | Default | CTL |
---|---|---|
Shortwave radiation scheme | Dudhia [34] | RRTM |
Longwave radiation scheme | RRTM | RRTM |
Cumulus scheme | BMJ | BMJ |
Microphysics scheme | Lin | Thompson |
Planetary boundary layer scheme | YSU | MYJ |
Land surface model | Noah | Noah |
Lake model | Off | On |
Topography information | USGS_30s | USGS/NGAGMTED2010_30s |
2.3. Sensitivity Experiments
3. Results
3.1. Trend of Regional Winds
3.2. Local Micro-Meteorological Conditions
3.3. The Triggering Mechanism
4. Discussion
5. Conclusions
- (1)
- Using a three-nesting domain with the MODIS land-use type, MYJ boundary layer scheme, the NOAH land-surface model, the Thompson microphysics scheme, and the RRTM shortwave and longwave radiation schemes, with 30 s high-resolution terrain datasets, the RMSE of the simulated wind velocity can be reduced by more than 50%.
- (2)
- In this study, we identified a powerful wind mechanism in regions having a high altitude and continuous topography, in which the terrain uplift has the most significant impact on the occurrence of local 8–9-scale extreme winds. When a large-scale atmospheric circulation is passing, accompanied with regional terrain lifting, the instantaneous wind velocity can reach the scale of 9 to 10 ( mean wind velocity between 20.8 and 28.4 m/s), causing damage to power lines.
- (3)
- Lifting due to high and concentrated mountains plays an import role in the triggering of 8- to 9-scale winds. In addition, wind is accelerated due to the passing of large-scale processes, which results in damage to transmission lines. Other factors, such as surface soil moisture and the land surface, including changing the forest to savanna, can affect the velocity and extent of the wind, but these influences can be limited. Both soil moisture and land use type can affect energy and water transfer between the land surface and the atmosphere. Local dry and wet conditions, particularly relating to soil moisture, influence the atmosphere via a feedback mechanism, and thus have a joint effect on the possible destructive effects of the wind on transmission lines. Therefore, when establishing transmission lines, it is vital to avoid sites where these factors may play an influencing role.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Solari, G.; Yang, Q.; Repetto, M.P. Extreme wind speed distribution in a mixed wind climate. J. Wind. Eng. Ind. Aerodyn. 2018, 176, 239–253. [Google Scholar] [CrossRef]
- Waliser, D.; Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 2017, 10, 179–183. [Google Scholar] [CrossRef]
- Gomes, L.; Vickery, B.J. Extreme wind speeds in mixed climates. J. Ind. Aerod. 1978, 2, 331–344. [Google Scholar] [CrossRef]
- Marchigiani, R.; Gordy, S.; Cipolla, J.; Adams, R.C.; Evans, D.C.; Stehly, C.; Galwankar, S.; Russell, S.; Marco, A.P.; Kman, N.; et al. Wind disasters: A comprehensive review of current management strategies. Int. J. Crit. Illn. Inj. Sci. 2013, 3, 130–142. [Google Scholar] [PubMed]
- Zhang, Y.; Lam, J.S.L. Estimating the economic losses of port disruption due to extreme wind events. Ocean. Coast. Manag. 2015, 116, 300–310. [Google Scholar] [CrossRef]
- Wang, C.-H.; Wang, X.; Khoo, Y.B. Extreme wind gust hazard in Australia and its sensitivity to climate change. Nat. Hazards 2013, 67, 549–567. [Google Scholar] [CrossRef]
- Britannica, T.E.O.E. Wind. Encyclopedia Britannica, 2020. Available online: https://www.britannica.com/science/wind (accessed on 8 January 2022).
- Löffler, J.; Anschlag, K.; Baker, B.; Finch, O.-D.; Wundram, D.; Diekkrüger, B.; Schröder, B.; Pape, R.; Lundberg, A. Mountain ecosystem response to global change. Erdkunde 2011, 6, 189–213. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Cheng, G.; Wen, A. The conception of mountain science development in China. Discip. Dev. 2008, 23, 156–161. [Google Scholar]
- Mo, H.M.; Hong, H.P.; Fan, F. Estimating the extreme wind speed for regions in China using surface wind observations and reanalysis data. J. Wind. Eng. Ind. Aerodyn. 2015, 143, 19–33. [Google Scholar] [CrossRef]
- Huicong, J.; Pan, D.; Wang, J.-A.; Zhang, W.-C. Risk mapping of integrated natural disasters in China. Nat. Hazards 2016, 80, 2023–2035. [Google Scholar]
- Dearing, J.A.; Jones, R.T.; Shen, J.; Yang, X.; Boyle, J.F.; Foster, G.C.; Crook, D.S.; Elvin, M.J.D. Using multiple archives to understand past and present climate–human–environment interactions: The lake Erhai catchment, Yunnan Province, China. J. Paleolimnol. 2008, 40, 3–31. [Google Scholar] [CrossRef]
- Li, B.; Morton, L.C.; Liu, Q. Climate change and mosquito-borne diseases in China: A review. Glob. Health 2013, 9, 10. [Google Scholar]
- Dai, J.; Tan, Y.; Yang, W.; Wen, L.; Shen, X. Investigation of wind resource characteristics in mountain wind farm using multiple-unit SCADA data in Chenzhou: A case study. Energy Convers. Manag. 2017, 148, 378–393. [Google Scholar] [CrossRef] [Green Version]
- Ohata, T.; Higuchi, K.; Ikegami, K. Mountain-valley wind system in the Khumbu Himal, East Nepal. J. Meteorol. Soc. Jpn. Ser. II 1981, 59, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Bert, B.; Hooff, T.v.; Aanen, L.; Bronsema, B. Computational analysis of the performance of a venturi-shaped roof for natural ventilation: Venturi-effect versus wind-blocking effect. Comput. Fluids 2011, 48, 202–213. [Google Scholar]
- Wei, C.; Zhong, S.; Geng, Y.; Chen, Y.; Cui, X.; Wu, Q.; Pan, H.; Wu, R.; Sun, L.; Tian, X. Emergy based sustainability evaluation for Yunnan Province, China. J. Clean. Prod. 2017, 162, 1388–1397. [Google Scholar]
- Fu, X.; Wang, J.; Li, H.-N.; Li, J.-X.; Yang, L.-D. Full-scale test and its numerical simulation of a transmission tower under extreme wind loads. J. Wind. Eng. Ind. Aerodyn. 2019, 190, 119–133. [Google Scholar] [CrossRef]
- Lin, J.; Sun, Y.-Z.; Cheng, L.; Gao, W.-Z. Assessment of the power reduction of wind farms under extreme wind condition by a high resolution simulation model. Appl. Energy 2012, 96, 21–32. [Google Scholar] [CrossRef]
- Lin, N.; Smith, J.A.; Villarini, G.; Marchok, T.P.; Baeck, M.L. Modeling Extreme Rainfall, Winds, and Surge from Hurricane Isabel (2003). Weather Forecast. 2010, 25, 1342–1361. [Google Scholar] [CrossRef]
- Bastine, D.; Larsén, X.; Witha, B.; Dörenkämper, M.; Gottschall, J. Extreme Winds in the New European Wind Atlas. J. Phys. Conf. Ser. 2018, 1102, 012006. [Google Scholar] [CrossRef]
- World Meteorological Organization. Manual on Marine Meteorological Services: Volume I–Global Aspect; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Edwards, R.; LaDue, J.G.; Ferree, J.T.; Scharfenberg, K.; Maier, C.; Coulbourne, W.L. Tornado intensity estimation: Past, present, and future. BAMS 2013, 94, 641–653. [Google Scholar] [CrossRef]
- Vinoth, J.; Young, I.R. Global Estimates of Extreme Wind Speed and Wave Height. J. Clim. 2011, 24, 1647–1665. [Google Scholar] [CrossRef]
- An, Y.; Pandey, M.D. A comparison of methods of extreme wind speed estimation. J. Wind. Eng. Ind. Aerodyn. 2005, 93, 535–545. [Google Scholar] [CrossRef]
- Martins, J.; Rocha, A.; Viceto, C.; Pereira, S.C.; Santos, J.A. Future Projections for Wind, Wind Shear and Helicity in the Iberian Peninsula. Atmosphere 2020, 11, 1001. [Google Scholar] [CrossRef]
- Luca, P.D.; Harpham, C.; Wilby, R.L.; Hillier, J.K.; Franzke, C.L.E.; Leckebusch, G.C. Past and Projected Weather Pattern Persistence with Associated Multi-Hazards in the British Isles. Atmosphere 2019, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Betts, A.; Miller, M. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 1986, 112, 693–709. [Google Scholar]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather. Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
Beaufort Number | Wind Velocity | Land Conditions |
---|---|---|
8 | 39–46 mph; 62–74 km/h; 17.2–20.7 m/s | Twigs break off trees, generally impedes progress. |
9 | 47–54 mph; 75–88 km/h; 20.8–24.4 m/s | Slight structural damage (chimney pots and slates removed). |
10 | 55–63 mph; 89–102 km/h; 24.5–28.4 m/s | Seldom experienced inland; trees uprooted; considerable structural damage. |
11 | 64–72 mph; 103–117 km/h; 28.5–32.6 m/s | Very rarely experienced, accompanied by widespread damage. |
Options | Model Default | Experiments |
---|---|---|
Nesting experiments | Same as CTL | one nested, two nested, and triple nested methods |
Removing mountain | Same as CTL, one nest | Altitude over 2400 m in the Cangshan mountain modified as 2400 m |
Reducing soil moisture | Same as CTL, one nest, and natural terrain | Reduce 40% |
Increasing soil moisture | Same as CTL, one nest, and natural terrain | Increase 40% |
Change the type of Land Use Land Cover Change (LUCC) | Same as CTL, one nest, and natural terrain | Change the land use type from forest to savanna |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wang, C.; Meng, X.; Zhao, L.; Li, Z.; Lyu, S.; Ao, Y. Triggering Mechanism of Extreme Wind over the Complex Mountain Area in Dali Region on the Yunnan-Guizhou Plateau, China. Atmosphere 2022, 13, 133. https://doi.org/10.3390/atmos13010133
Chen H, Wang C, Meng X, Zhao L, Li Z, Lyu S, Ao Y. Triggering Mechanism of Extreme Wind over the Complex Mountain Area in Dali Region on the Yunnan-Guizhou Plateau, China. Atmosphere. 2022; 13(1):133. https://doi.org/10.3390/atmos13010133
Chicago/Turabian StyleChen, Hao, Chan Wang, Xianhong Meng, Lin Zhao, Zhaoguo Li, Shihua Lyu, and Yinhuan Ao. 2022. "Triggering Mechanism of Extreme Wind over the Complex Mountain Area in Dali Region on the Yunnan-Guizhou Plateau, China" Atmosphere 13, no. 1: 133. https://doi.org/10.3390/atmos13010133
APA StyleChen, H., Wang, C., Meng, X., Zhao, L., Li, Z., Lyu, S., & Ao, Y. (2022). Triggering Mechanism of Extreme Wind over the Complex Mountain Area in Dali Region on the Yunnan-Guizhou Plateau, China. Atmosphere, 13(1), 133. https://doi.org/10.3390/atmos13010133