Relationships between Vertical Temperature Gradients and PM10 Concentrations during Selected Weather Conditions in Upper Silesia (Southern Poland)
Abstract
:1. Introduction
2. Research Area, Data, and Methods
2.1. Research Area and Data
2.2. Methods
- strong instability γ < −1.0 K,
- conditional instability −1 K ≤ γ < −0.5 K,
- isothermal conditions −0.5 K ≤ γ ≤ 0.5 K,
- weak inversion 1 K > γ > 0.5 K,
- moderate inversion 5.0 K > γ ≥ 1.0 K
- strong inversion γ ≥ 5.0 K.
- very good air quality (AQ1): 0 μg/m3 < PM10 ≤ 25 μg/m3
- good air quality (AQ2): 25 μg/m3 < PM10 ≤ 50 μg/m3
- moderate air quality (AQ3): 50 μg/m3 < PM10 ≤ 90 μg/m3
- bad air quality (AQ4): 90 μg/m3 < PM10 ≤ 180 μg/m3
- very bad air quality (AQ5): PM10 > 180 μg/m3
3. Climatology of Air Temperature Gradients—Occurrence, Persistence and Intensity
3.1. Daily Course of Air Temperature Gradients (γ)
3.2. Annual Course of Air Temperature Gradients (γ)
4. Daily, Monthly and Seasonal Variability in Air Quality Classes
5. Relationships between Air Temperature Gradients and Air Quality Classes
6. Meteorological Conditions for Vertical Temperature Gradients and Air Quality Classes
6.1. Air Temperature (AT)
6.2. Wind Speed (V)
6.3. Cloudiness (N)
6.4. Relative Humidity (RH)
6.5. Wet and Dry Hours
6.6. Clear and Cloudy Hours
7. Probability of Air Temperature Inversions and Bad Air Quality Conditioned by Ranges of Weather Elements
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, M.A.; Holmes, B.A. Seasonal and Diurnal Patterns of Temperature Inversion Formation and Breakup in a Topographically Complex Urban Environment. In Proceedings of the National Conference on Undergraduate Research (NCUR) 2015, Cheney, WA, USA, 16–18 April 2015; pp. 430–438. [Google Scholar]
- Holzworth, C.G. Estimates of mean maximum mixing depths in the contiguous United States. Mon. Weather Rev. 1964, 92, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Elsom, D.; Chandler, T. Meteorological controls upon ground level concentrations of smoke and sulphur dioxide in two urban areas of the United Kingdom. Atmos. Environ. (1967) 1978, 12, 1543–1554. [Google Scholar] [CrossRef]
- Pissimanis, D.; Karras, G.; Notaridou, V. On the meteorological conditions during some strong smoke episodes in Athens. Atmos. Environ. Part B Urban Atmos. 1991, 25, 193–202. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, K.C. Estimation of atmospheric mixing layer height from radiosonde data. Atmos. Meas. Tech. 2014, 7, 1701–1709. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK; New York, NY, USA, 1987; p. 435. [Google Scholar]
- Sager, L. Estimating the effect of air pollution on road safety using atmospheric temperature inversions. J. Environ. Econ. Manag. 2019, 98, 102250. [Google Scholar] [CrossRef]
- Serreze, M.C.; Schnell, R.; Kahl, J.D. Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data. J. Clim. 1992, 5, 615–629. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Bian, X.; Zhong, S. Wintertime Evolution of the Temperature Inversion in the Colorado Plateau Basin. J. Appl. Meteorol. 1999, 38, 1103–1117. [Google Scholar] [CrossRef]
- Malingowski, J.; Atkinson, D.; Fochesatto, J.; Cherry, J.; Stevens, E. An observational study of radiation temperature inversions in Fairbanks, Alaska. Polar Sci. 2014, 8, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Juda, J.; Chróściel, S. Ochrona Powietrza Atmosferycznego [Atmospheric Air Protection]; Wyd. Nauk. Techn.: Warszawa, Poland, 1974; p. 439. (In Polish) [Google Scholar]
- Bil, G. Prawdopodobieństwo Występowania Inwersji Temperatury Powietrza W Sosnowcu. In Górnośląsko-Ostrawski Region Przemysłowy: Wybrane Problemy Ochrony i Kształtowania Środowiska; Materiały Sympozjum Polsko-Czeskiego; Pełka-Gościniak, J., Rzętała, M., Eds.; University of Silesia: Sosnowiec, Poland, 1999; pp. 33–36. (In Polish) [Google Scholar]
- Bil, G. Meteorologiczne wskaźniki zapylenia atmosfery (Katowice 1981–1996). Pol. Tow. Mineral. Pr. Spec. 1999, 15, 21–26. (In Polish) [Google Scholar]
- Corsmeier, U.; Kossmann, M.; Kalthoff, N.; Sturman, A. Temporal evolution of winter smog within a nocturnal boundary layer at Christchurch, New Zealand. Theor. Appl. Clim. 2005, 91, 129–148. [Google Scholar] [CrossRef]
- Oleniacz, R.; Rzeszutek, M. Assessment of the Impact of Spatial Data on the Results of Air Pollution Dispersion Modeling. Geoinform. Pol. 2014, 13, 57–68. [Google Scholar] [CrossRef]
- Trinh, T.T.; Le, T.T.; Nguyen, T.D.H.; Tu, B.M. Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam. Environ. Geochem. Health 2018, 41, 929–937. [Google Scholar] [CrossRef]
- Cohen, L.; Helmig, D.; Neff, W.; Grachev, A.; Fairall, C. Boundary-layer dynamics and its influence on atmospheric chemistry at Summit, Greenland. Atmos. Environ. 2007, 41, 5044–5060. [Google Scholar] [CrossRef]
- Huff, D.M.; Joyce, P.L.; Fochesatto, G.J.; Simpson, W.R. Deposition of dinitrogen pentaoxide, N2O5, to the snowpack at high latitudes. Atmos. Chem. Phys. Discuss. 2011, 11, 4929–4938. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Guan, D.; Jin, C.; Wang, A.; Wu, J.; Yuan, F. Influences of snow event on energy balance over tem-perate meadow in dormant season based on eddy covariance measurements. J. Hydrol. 2011, 399, 100–107. [Google Scholar] [CrossRef]
- Bowling, S.A.; Ohtake, T.; Benson, C.S. Winter Pressure Systems and Ice Fog in Fairbanks, Alaska. J. Appl. Meteorol. 1968, 7, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.S.; Keimig, F.T.; Díaz, H.F. Climatology of surface-based inversions in the North American Arctic. J. Geophys. Res. Space Phys. 1992, 97, 15699–15712. [Google Scholar] [CrossRef] [Green Version]
- Frederiks, T.M.; Christopher, J.T.; Sutherland, M.W.; Borrell, A.K. Post-head-emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. J. Exp. Bot. 2015, 66, 3487–3498. [Google Scholar] [CrossRef] [Green Version]
- Kahl, J.D. Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Clim. 1990, 10, 537–548. [Google Scholar] [CrossRef]
- Kahl, J.D.; Serreze, M.C.; Schnell, R. Tropospheric low-level temperature inversions in the Canadian Arctic. Atmos. Ocean. 1992, 30, 511–529. [Google Scholar] [CrossRef]
- Hartmann, B.; Wendler, G. Climatology of the winter surface temperature inversion in Fairbanks, Alaska. In Proceedings of the 85th Annual Meeting of the American Meteorological Society, San Diego, CA, USA, 9–13 January 2005; pp. 1–7. [Google Scholar]
- Whiteman, C.D.; Zhong, S. Downslope Flows on a Low-Angle Slope and Their Interactions with Valley Inversions. Part I: Observations. J. Appl. Meteorol. Clim. 2008, 47, 2023–2038. [Google Scholar] [CrossRef] [Green Version]
- Bourne, S.; Bhatt, U.; Zhang, J.; Thoman, R. Surface-based temperature inversions in Alaska from a climate perspective. Atmos. Res. 2010, 95, 353–366. [Google Scholar] [CrossRef]
- Bintanja, R.; Graversen, R.G.; Hazeleger, W. Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci. 2011, 4, 758–761. [Google Scholar] [CrossRef]
- Zhang, Y.; Seidel, D.J.; Golaz, J.-C.; Deser, C.; Tomas, R.A. Climatological Characteristics of Arctic and Antarctic Surface-Based Inversions. J. Clim. 2011, 24, 5167–5186. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Seidel, D.J. Challenges in estimating trends in Arctic surface-based inversions from radiosonde data. Geophys. Res. Lett. 2011, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pietroni, I.; Argentini, S.; Petenko, I. One Year of Surface-Based Temperature Inversions at Dome C, Antarctica. Bound. Layer Meteorol. 2013, 150, 131–151. [Google Scholar] [CrossRef] [Green Version]
- Hudson, S.R.; Brandt, R.E. A Look at the Surface-Based Temperature Inversion on the Antarctic Plateau. J. Clim. 2005, 18, 1673–1696. [Google Scholar] [CrossRef]
- Mayfield, J.A.; Fochesatto, G.J. The Layered Structure of the Winter Atmospheric Boundary Layer in the Interior of Alaska. J. Appl. Meteorol. Clim. 2013, 52, 953–973. [Google Scholar] [CrossRef]
- Feng, X.; Wei, S.; Wang, S. Temperature inversions in the atmospheric boundary layer and lower troposphere over the Sichuan Basin, China: Climatology and impacts on air pollution. Sci. Total Environ. 2020, 726, 138579. [Google Scholar] [CrossRef]
- Milionis, A.E.; Davies, T.D. The effect of the prevailing weather on the statistics of atmospheric temperature inversions. Int. J. Clim. 2007, 28, 1385–1397. [Google Scholar] [CrossRef]
- Byers, H.R.; Starr, V.P. The Circulation of the Atmosphere in High Latitudes during Winter. Mon. Weather Rev. 1941, 47, 1–34. [Google Scholar]
- Cassano, E.N.; Cassano, J.J.; Nolan, M. Synoptic weather pattern controls on temperature in Alaska. J. Geophys. Res. Space Phys. 2011, 116, 1–19. [Google Scholar] [CrossRef]
- Fochesatto, G.J. Methodology for determining multilayered temperature inversions. Atmos. Meas. Tech. 2015, 8, 2051–2060. [Google Scholar] [CrossRef] [Green Version]
- Al-Hemoud, A.; Al-Sudairawi, M.; Al-Rashidi, M.; Behbehani, W.; Al-Khayat, A. Temperature inversion and mixing height: Critical indicators for air pollution in hot arid climate. Nat. Hazards 2019, 97, 139–155. [Google Scholar] [CrossRef]
- Milionis, A.E.; Davies, T.D. A five-year climatology of elevated inversions at Hemsby (UK). Int. J. Clim. 1992, 12, 205–215. [Google Scholar] [CrossRef]
- Shahi, S.; Abermann, J.; Heinrich, G.; Prinz, R.; Schöner, W. Regional Variability and Trends of Temperature Inversions in Greenland. J. Clim. 2020, 33, 9391–9407. [Google Scholar] [CrossRef]
- Bokwa, A. Influence of air temperature inversions on the air pollution dispersion conditions in Krakow. Pr. Geogr. 2011, 126, 41–51. [Google Scholar]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. The impact of thermal inversion on the variability of PM10 concentration in winter seasons in Tricity. Environ. Prot. Eng. 2017, 43, 157–172. [Google Scholar] [CrossRef]
- Czarnecka, M.; Nidzgorska-Lencewicz, J.; Rawicki, K. Temporal structure of thermal inversions in Łeba (Poland). Theor. Appl. Clim. 2018, 136, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Palarz, A.; Celiński-Mysław, D.; Ustrnul, Z. Temporal and spatial variability of surface-based inversions over Europe based on ERA-Interim reanalysis. Int. J. Clim. 2017, 38, 158–168. [Google Scholar] [CrossRef]
- Palarz, A.; Luterbacher, J.; Ustrnul, Z.; Xoplaki, E.; Celiński-Mysław, D. Representation of low-tropospheric temperature inversions in ECMWF reanalyses over Europe. Environ. Res. Lett. 2020, 15, 074043. [Google Scholar] [CrossRef]
- Niedźwiedź, T.; Łupikasza, E.B.; Małarzewski, Ł.; Budzik, T. Surface-based nocturnal air temperature inversions in southern Poland and their influence on PM10 and PM2.5 concentrations in Upper Silesia. Theor. Appl. Clim. 2021, 146, 897–919. [Google Scholar] [CrossRef]
- Dalrymple, P.C.; Lettau, H.H.; Wollaston, S.H. South Pole micrometeorology program: Data analysis. In Studies in Antarctic Meteorology: Antarctic Research Series; Rubin, M.J., Ed.; American Geophysical Union: Washington, DC, USA, 1996; Volume 9, pp. 13–57. [Google Scholar]
- Lettau, H.H.; Schwerdtfeger, W. Dynamics of the surface-wind regime over the interior of Antarctica. Antarct. JUS 1967, 2, 155–158. [Google Scholar]
- Li, X.; Miao, Y.; Ma, Y.; Wang, Y.; Zhang, Y. Impacts of synoptic forcing and topography on aerosol pollution during winter in Shenyang, Northeast China. Atmos. Res. 2021, 262, 105764. [Google Scholar] [CrossRef]
- Malek, E.; Davis, T.; Martin, R.S.; Silva, P. Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. Atmos. Res. 2006, 79, 108–122. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Li, Z.; Hu, J.; Rosenfeld, D. Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation. Atmos. Chem. Phys. Discuss. 2020, 20, 14163–14182. [Google Scholar] [CrossRef]
- Milionis, A.E.; Davies, T.D. Associations between atmospheric temperature inversions and vertical wind profiles: A preliminary assessment. Meteorol. Appl. 2002, 9, 223–228. [Google Scholar] [CrossRef]
- Aikawa, M.; Hiraki, T. Characteristic seasonal variation of vertical air temperature profile in urban areas of Japan. Theor. Appl. Clim. 2009, 104, 95–102. [Google Scholar] [CrossRef]
- Lokoshchenko, M.A. Temperature stratification of the lower atmosphere over Moscow. Russ. Meteorol. Hydrol. 2007, 32, 35–42. [Google Scholar] [CrossRef]
- Olofson, K.F.G.; Andersson, P.U.; Hallquist, M.; Ljungström, E.; Tang, L.; Chen, D.; Pettersson, J.B. Urban aerosol evolution and particle formation during wintertime temperature inversions. Atmos. Environ. 2009, 43, 340–346. [Google Scholar] [CrossRef]
- Largeron, Y.; Staquet, C. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos. Environ. 2016, 135, 92–108. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Li, Z.; Wang, P.; Cribb, M.; Fan, X. Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Adv. Atmos. Sci. 2015, 32, 898–908. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Li, Z.; Wang, P.; Fan, X.; He, W.; Zhang, J. Analysis of Low-level Temperature Inversions and Their Effects on Aerosols in the Lower Atmosphere. Adv. Atmos. Sci. 2019, 36, 1235–1250. [Google Scholar] [CrossRef]
- Nidzgorska-Lencewicz, J.; Czarnecka, M. Thermal Inversion and Particulate Matter Concentration in Wrocław in Winter Season. Atmosphere 2020, 11, 1351. [Google Scholar] [CrossRef]
- Kassomenos, P.A.; Paschalidou, A.K.; Lykoudis, S.; Koletsis, I. Temperature inversion characteristics in relation to synoptic circulation above Athens, Greece. Environ. Monit. Assess. 2014, 186, 3495–3502. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-López, D.; Vaca, F.; Hernández-Ceballos, M.; Bolívar, J. Identification and characterisation of regional ozone episodes in the southwest of the Iberian Peninsula. Atmos. Environ. 2015, 103, 276–288. [Google Scholar] [CrossRef]
- Hosseiniebalam, F.; Ghaffarpasand, O. The effects of emission sources and meteorological factors on sulphur dioxide concentration of Great Isfahan, Iran. Atmos. Environ. 2015, 100, 94–101. [Google Scholar] [CrossRef]
- Tie, X.; Zhang, Q.; He, H.; Cao, J.; Han, S.; Gao, Y.; Li, X.; Jia, X.C. A budget analysis of the formation of haze in Beijing. Atmos. Environ. 2014, 100, 25–36. [Google Scholar] [CrossRef]
- Masiol, M.; Harrison, R.M. Quantification of air quality impacts of London Heathrow Airport (UK) from 2005 to 2012. Atmos. Environ. 2015, 116, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Hitzenberger, R.; Berner, A.; Dusek, U.; Alabashi, R. Humidity-Dependent Growth of Size-Segregated Aerosol Samples. Aerosol Sci. Technol. 1997, 27, 116–130. [Google Scholar] [CrossRef]
- Okada, K.; Hitzenberger, R.M. Mixing properties of individual submicrometer aerosol particles in Vienna. Atmos. Environ. 2001, 35, 5617–5628. [Google Scholar] [CrossRef]
- Puxbaum, H.; Gomiscek, B.; Kalina, M.; Bauer, H.; Salam, A.; Stopper, S.; Preining, O.; Hauck, H. A dual site study of PM2.5 and PM10 aerosol chemistry in the larger region of Vienna, Austria. Atmos. Environ. 2004, 38, 3949–3958. [Google Scholar] [CrossRef]
- Masiol, M.; Squizzato, S.; Rampazzo, G.; Pavoni, B. Source apportionment of PM2.5 at multiple sites in Venice (Italy): Spatial variability and the role of weather. Atmos. Environ. 2014, 98, 78–88. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Hoch, S.W.; Horel, J.D.; Charland, A. Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos. Environ. 2014, 94, 742–753. [Google Scholar] [CrossRef]
- Wonaschütz, A.; Demattio, A.; Wagner, R.; Burkart, J.; Zizkova, N.; Vodička, P.; Ludwig, W.; Steiner, G.; Schwarz, J.; Hitzenberger, R. Seasonality of new particle formation in Vienna, Austria—Influence of air mass origin and aerosol chemical composition. Atmos. Environ. 2015, 118, 118–126. [Google Scholar] [CrossRef]
- Russo, A.; Trigo, R.; Martins, H.; Mendes, M.T. NO2, PM10 and O3 urban concentrations and its association with circulation weather types in Portugal. Atmos. Environ. 2014, 89, 768–785. [Google Scholar] [CrossRef]
- Hellack, B.; Quass, U.; Beuck, H.; Wick, G.; Kuttler, W.; Schins, R.P.F.; Kuhlbusch, T.A.J. Elemental compo-sition and radical formation potency of PM10 at anurban background station in Germany in relation to origin of airmasses. Atmos. Environ. 2015, 105, 1–6. [Google Scholar] [CrossRef]
- Wolf-Grosse, T.; Esau, I.; Reuder, J. The large-scale circulation during air quality hazards in Bergen, Norway. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, J.; Zhang, M.; Yang, Y.; Shen, X.; Wang, Y.; Chen, D.; Guo, J. A study of the meteorological causes of a prolonged and severe haze episode in January 2013 over central-eastern China. Atmos. Environ. 2014, 98, 146–157. [Google Scholar] [CrossRef]
- Leśniok, M.; Małarzewski, Ł.; Niedźwiedź, T. Classification of circulation types for Southern Poland with an application to air pollution concentration in Upper Silesia. Phys. Chem. Earth Parts A/B/C 2010, 35, 516–522. [Google Scholar] [CrossRef]
- Janhäll, S.; Olofson, K.; Andersson, P.; Pettersson, J.; Hallquist, M. Evolution of the urban aerosol during winter temperature inversion episodes. Atmos. Environ. 2006, 40, 5355–5366. [Google Scholar] [CrossRef]
- Wolf, T.; Esau, I.; Reuder, J. Analysis of the vertical temperature structure in the Bergen valley, Norway, and its connection to pollution episodes. J. Geophys. Res. Atmos. 2014, 119, 10645–10662. [Google Scholar] [CrossRef] [Green Version]
- Tavousi, T.; Abadi, N.H. Investigation of inversion characteristics in atmospheric boundary layer: A case study of Tehran, Iran. Model. Earth Syst. Environ. 2016, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Karki, R.; Hasson, S.U.; Schickhoff, U.; Scholten, T.; Boehner, J.; Gerlitz, L. Near surface air temperature lapse rates over complex terrain: A WRF based analysis of controlling factors and processes for the central Himalayas. Clim. Dyn. 2019, 54, 329–349. [Google Scholar] [CrossRef]
- Adães, J.; Pires, J.C.M. Analysis and Modelling of PM2.5 Temporal and Spatial Behaviors in European Cities. Sustainability 2019, 11, 6019. [Google Scholar] [CrossRef] [Green Version]
- Jablonska, M.; Janeczek, J. Identification of industrial point sources of airborne dust particles in an urban environment by a combined mineralogical and meteorological analyses: A case study from the Upper Silesian conurbation, Poland. Atmos. Pollut. Res. 2019, 10, 980–988. [Google Scholar] [CrossRef]
- Fabiańska, M.J.; Smółka-Danielowska, D. Biomarker compounds in ash from coal combustion in domestic furnaces (Upper Silesia Coal Basin, Poland). Fuel 2012, 102, 333–344. [Google Scholar] [CrossRef]
- Nádudvari, A.; Fabiańska, M.; Marynowski, L.; Kozielska, B.; Konieczyński, J.; Smołka-Danielowska, D.; Ćmiel, S. Distribution of coal and coal combustion related organic pollutants in the environment of the Upper Silesian Industrial Region. Sci. Total Environ. 2018, 628, 1462–1488. [Google Scholar] [CrossRef]
- Elshout, S.; van den Bartelds, H.; Heich, H.; Léger, K. Citeair II, Common Information to European Air, CAQUI Air Quality Index. European Union. 2012. Available online: https://www.airqualitynow.eu/download/CITEAIR-Comparing_Urban_Air_Quality_across_Borders.pdf (accessed on 17 January 2020).
- Gehrig, R.; Buchmann, B. Characterizing seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos. Environ. 2003, 37, 2571–2580. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Chapter 20. Wet Deposition. In Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 856–888. [Google Scholar]
- Laakso, L.; Hussein, T.; Aarnio, P.; Komppula, M.; Hiltunen, V.; Viisanen, Y.; Kulmala, M. Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmos. Environ. 2003, 37, 2629–2641. [Google Scholar] [CrossRef]
- Dayan, U.; Levy, I. The Influence of Meteorological Conditions and Atmospheric Circulation Types on PM10 and Visibility in Tel Aviv. J. Appl. Meteorol. 2005, 44, 606–619. [Google Scholar] [CrossRef]
- Stryhal, J.; Huth, R.; Sládek, I. Climatology of low-level temperature inversions at the Prague-Libuš aerological station. Theor. Appl. Clim. 2015, 127, 409–420. [Google Scholar] [CrossRef]
- Palarz, A. Variability of air temperature inversions over Cracow in relation to the atmospheric circulation. Pr. Geogr. 2014, 138, 29–43. (In Polish) [Google Scholar] [CrossRef]
- Rendón, A.M.; Salazar, J.; Palacio, C.; Wirth, V. Temperature Inversion Breakup with Impacts on Air Quality in Urban Valleys Influenced by Topographic Shading. J. Appl. Meteorol. Clim. 2015, 54, 302–321. [Google Scholar] [CrossRef]
- Woś, A. Klimat Polski W Drugiej Połowie XX Wieku (Climate of Poland in the Second Half of the 20th Century); Wydawnictwo Naukowe UAM: Poznań, Poland, 2010; p. 489, (In Polish, Summary In English). [Google Scholar]
- Bradley, R.S.; Keimig, F.T.; Diaz, H.F. Recent changes in the North American Arctic boundary layer in winter. J. Geophys. Res. Space Phys. 1993, 98, 8851–8858. [Google Scholar] [CrossRef]
- Andreas, E.L.; Claffy, K.J.; Makshtas, A.P. Low-Level Atmospheric Jets and Inversions Over the Western Weddell Sea. Bound. -Layer Meteorol. 2000, 97, 459–486. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Eisenbach, S.; Pospichal, B.; Steinacker, R. Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin. J. Appl. Meteorol. 2004, 43, 1635–1647. [Google Scholar] [CrossRef]
- Yao, W.; Zhong, S. Nocturnal temperature inversions in a small, enclosed basin and their relationship to ambient atmospheric conditions. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2009, 103, 195–210. [Google Scholar] [CrossRef]
- Caputa, Z.A.; Lesniok, M.R.; Niedźwiedź, T.; Knozova, G.B. The influence of atmospheric circulation and cloudiness on the intensity of temperature inversions in Sosnowiec (Upper Silesia, Southern Poland). Int. J. Environ. Waste Manag. 2009, 4, 17–31. [Google Scholar] [CrossRef]
- Katsoulis, B.D. Aspects of the occurrence of persistent surface inversions over Athens basin, Greece. Theor. Appl. Clim. 1988, 39, 98–107. [Google Scholar] [CrossRef]
- Walczewski, J. (Ed.) Characteristics of the Atmospheric Boundary Layer over An Urban Area—the Case of Cracow. In Materiały Badawcze, Seria: Meteorologia; IMGW: Warszawa, Poland, 1994; Volume 22. (In Polish) [Google Scholar]
- Walczewski, J. Some data on occurrence of the all-day inversions in the atmospheric boundary-layer in Cracow and on the factors stimulating this occurrence. Przegląd Geofiz. 2009, 54, 183–191. (In Polish) [Google Scholar]
- Prezerakos, N.G. Lower tropospheric structure and synoptic scale circulation patterns during prolonged temperature inversions over Athens, Greece. Theor. Appl. Climatol. 1998, 60, 63–76. [Google Scholar] [CrossRef]
- Bailey, A.; Chase, T.N.; Cassano, J.J.; Noone, D. Changing Temperature Inversion Characteristics in the U.S. Southwest and Relationships to Large-Scale Atmospheric Circulation. J. Appl. Meteorol. Clim. 2011, 50, 1307–1323. [Google Scholar] [CrossRef]
- Vitasse, Y.; Klein, G.; Kirchner, J.; Rebetez, M. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theor. Appl. Clim. 2016, 130, 1073–1083. [Google Scholar] [CrossRef]
- Bil, G. Inwersje temperatury w Sosnowcu (The temperature inversion in Sosnowiec). In Środowisko Przyrodnicze Regionu Górnośląskiego—Stan Poznania, Zagrożenia I Ochrona; Jankowski, A.T., Ed.; University of Silesia: Sosnowiec, Poland, 2000; pp. 13–20. (In Polish) [Google Scholar]
- Ji, F.; Evans, J.P.; Di Luca, A.; Jiang, N.; Olson, R.; Fita, L.; Argüeso, D.; Chang, L.T.-C.; Scorgie, Y.; Riley, M. Projected change in characteristics of near surface temperature inversions for southeast Australia. Clim. Dyn. 2018, 52, 1487–1503. [Google Scholar] [CrossRef]
- Chtioui, H.; Bouchlaghem, K.; Gazzah, M.H. Identification and assessment of intense African dust events and contribution to PM10 concentration in Tunisia. Eur. Phys. J. Plus 2019, 134, 575. [Google Scholar] [CrossRef]
- Wang, J.; Xie, X.; Fang, C. Temporal and Spatial Distribution Characteristics of Atmospheric Particulate Matter (PM10 and PM2.5) in Changchun and Analysis of Its Influencing Factors. Atmosphere 2019, 10, 651. [Google Scholar] [CrossRef] [Green Version]
- Chirasophon, S.; Pochanart, P. The Long-term Characteristics of PM10 and PM2.5 in Bangkok, Thailand. Asian J. Atmos. Environ. 2020, 14, 73–83. [Google Scholar] [CrossRef]
- Kim, S.-U.; Kim, K.-Y. Physical and chemical mechanisms of the daily-to-seasonal variation of PM10 in Korea. Sci. Total Environ. 2020, 712, 136429. [Google Scholar] [CrossRef]
- Sheridan, S.C.; Power, H.C.; Senkbeil, J.C. A further analysis of the spatio-temporal variability in aerosols across North America: Incorporation of lower tropospheric (850-hPa) flow. Int. J. Clim. 2007, 28, 1189–1199. [Google Scholar] [CrossRef]
- Leśniok, M.R.; Caputa, Z.A. The role of atmospheric circulation in air pollution distribution in Katowice Region (Southern Poland). Int. J. Environ. Waste Manag. 2009, 4, 62–74. [Google Scholar] [CrossRef]
- Grundstrom, M.; Tang, L.; Hallquist, M.; Nguyen, H.; Chen, D.; Pleijel, H. Influence of atmospheric circulation patterns on urban air quality during the winter. Atmos. Pollut. Res. 2015, 6, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Grundström, M.; Hak, C.; Chen, D.; Hallquist, M.; Pleijel, H. Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air—Relationships with wind speed, vertical temperature gradient and weather type. Atmos. Environ. 2015, 120, 317–327. [Google Scholar] [CrossRef]
- Pleijel, H.; Grundström, M.; Karlsson, G.P.; Karlsson, P.E.; Chen, D. A method to assess the inter-annual weather-dependent variability in air pollution concentration and deposition based on weather typing. Atmos. Environ. 2016, 126, 200–210. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, N.; Vanos, J.K.; Cao, G. Effects of synoptic weather on ground-level PM 2.5 concentrations in the United States. Atmos. Environ. 2017, 148, 297–305. [Google Scholar] [CrossRef]
- Triantafyllou, A.G. PM10 pollution episodes as a function of synoptic climatology in a mountainous industrial area. Environ. Pollut. 2001, 112, 491–500. [Google Scholar] [CrossRef]
- Marynowski, L.; Łupikasza, E.; Dąbrowska-Zapart, K.; Małarzewski, Ł.; Niedźwiedź, T.; Simoneit, B.R. Seasonal and vertical variability of saccharides and other organic tracers of PM10 in relation to weather conditions in an urban environment of Upper Silesia, Poland. Atmos. Environ. 2020, 242, 117849. [Google Scholar] [CrossRef]
- Widawski, A. The influence of atmospheric circulation on the air pollution concentration and temperature inversion in Sosnowiec. Case study. Environ. Socio-Econ. Stud. 2015, 3, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Chen, H.; Yu, E.; Luo, T. PM2.5/PM10 Ratios in Eight Economic Regions and Their Relationship with Meteorology in China. Adv. Meteorol. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
Symbol | Variable (Unit) |
---|---|
AT2; T2 | Air temperature 2 m (°C) |
AT88; T88 | Air temperature 88 m (°C) |
dt | Temperature difference: dt = AT88 − AT2 (K) |
γ; ATG | Vertical temperature gradient: γ = (AT88 − AT2)/86 ∗ 100 (K/100 m) |
PM10 | Particulate matter of less than 10 microns (μg/m3) |
V | Wind speed (m/s) |
N | Cloudiness (% of sky coverage; N% = N octas * 12.5) |
N ≤ 20% | Clear hours |
N ≥ 80% | Cloudy hours |
RH | Relative humidity (%) |
RH < 50% | Dry hours |
RH > 80% | Wet hours |
Season | AT2 | AT88 | dt | V | PM10S | PM10K | PM10Z | PM10G | |
---|---|---|---|---|---|---|---|---|---|
MAM | ND | 12 | 12 | 12 | 4 | 16 | 2 | 2 | 10 |
Full | 75 | 75 | 76 | 82 | 36 | 46 | 70 | 63 | |
G ≤ 20% | 80 | 80 | 80 | 92 | 81 | 94 | 88 | 86 | |
G > 20% | 8 | 8 | 8 | 5 | 4 | 4 | 10 | 5 | |
JJA | ND | 7 | 7 | 7 | 9 | 20 | 6 | 2 | 12 |
Full | 65 | 65 | 67 | 68 | 36 | 44 | 58 | 58 | |
G ≤ 20% | 78 | 78 | 78 | 88 | 73 | 88 | 90 | 78 | |
G > 20% | 6 | 6 | 6 | 5 | 7 | 6 | 7 | 10 | |
SON | ND | 15 | 15 | 15 | 14 | 16 | 4 | 10 | 8 |
Full | 68 | 68 | 70 | 71 | 45 | 61 | 54 | 60 | |
G ≤ 20% | 76 | 76 | 76 | 78 | 78 | 90 | 84 | 86 | |
G > 20% | 9 | 9 | 9 | 9 | 6 | 6 | 6 | 6 | |
DJF | ND | 7 | 7 | 7 | 9 | 16 | 4 | 4 | 10 |
Full | 80 | 80 | 80 | 83 | 44 | 57 | 57 | 72 | |
G ≤ 20% | 89 | 89 | 89 | 88 | 76 | 91 | 88 | 84 | |
G > 20% | 4 | 4 | 4 | 4 | 9 | 5 | 9 | 6 |
Period | γ > 0.5 K | γ ≥ 1 K | γ ≥ 5 K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 h | 3 h | 6 h | 12 h | 1 h | 3 h | 6 h | 12 h | 1 h | 3 h | 6 h | 12 h | |
Dec | 57 | 45 | 33 | 14 | 45 | 35 | 24 | 8.5 | 8 | 5 | 2.0 | 0.5 |
Jan | 54 | 41 | 31 | 14 | 44 | 32 | 23 | 8.8 | 8 | 6 | 2.6 | 0.3 |
Feb | 61 | 46 | 33 | 10 | 48 | 35 | 25 | 7.2 | 10 | 5 | 2.8 | 0.9 |
DJF | 57 | 44 | 32 | 13 | 46 | 34 | 24 | 8,2 | 8.8 | 5.3 | 2.5 | 0.6 |
Mar | 69 | 59 | 46 | 15 | 59 | 44 | 34 | 9.0 | 17 | 11 | 4.9 | 0.3 |
Apr | 84 | 74 | 57 | 14 | 77 | 65 | 47 | 7.9 | 29 | 17 | 6.4 | 0.1 |
May | 86 | 75 | 51 | 5.1 | 79 | 66 | 38 | 0 | 29 | 17 | 4.0 | 0 |
MAM | 79 | 69 | 51 | 11 | 72 | 58 | 40 | 8.5 | 25 | 15 | 5.1 | 0.2 |
Jun | 88 | 76 | 51 | 3.3 | 85 | 71 | 39 | 1.3 | 25 | 13 | 2.2 | 0 |
Jul | 89 | 82 | 58 | 6.4 | 85 | 73 | 47 | 2.9 | 33 | 20 | 4.1 | 0 |
Aug | 94 | 88 | 73 | 21 | 89 | 80 | 58 | 12 | 31 | 18 | 5.2 | 0 |
JJA | 90 | 82 | 61 | 10 | 86 | 75 | 48 | 5.4 | 30 | 17 | 3.8 | 0 |
Sep | 83 | 75 | 64 | 33 | 76 | 67 | 54 | 26 | 35 | 24 | 11 | 0.9 |
Oct | 79 | 69 | 58 | 27 | 70 | 62 | 49 | 20 | 27 | 20 | 11 | 3.0 |
Nov | 67 | 56 | 41 | 20 | 57 | 46 | 33 | 15 | 16 | 11 | 6.4 | 1.6 |
SON | 76 | 66 | 54 | 27 | 67 | 58 | 45 | 20 | 26 | 18 | 9.5 | 1.9 |
ME | γ Class | MAM | JJA | SON | DJF | AQ Class | MAM | JJA | SON | DJF |
---|---|---|---|---|---|---|---|---|---|---|
AT | γ < −0.5K | 10.7 | 21.1 | 10.4 | 0.0 | AQ12 | 10.0 | 19.0 | 10.0 | 1.4 |
γ ≥ 1.0 K | 6.7 | 16.1 | 7.7 | −3.5 | AQ45 | 4.2 | 19.8 | 5.7 | −3.3 | |
Diff.γ | −4.0 | −5.0 | −2.7 | −3.4 | Diff.AQ | −5.8 | 0.8 | −4.2 | −4.7 | |
V | γ < −0.5 K | 2.5 | 2.0 | 2.0 | 2.1 | AQ12 | 2.2 | 1.6 | 1.8 | 2.3 |
γ ≥ 1.0 K | 0.5 | 0.5 | 0.4 | 0.5 | AQ45 | 0.9 | 1.0 | 0.6 | 0.8 | |
Diff.γ | −2.0 | −1.5 | −1.6 | −1.6 | Diff.AQ | −1.3 | −0.5 | −1.2 | −1.5 | |
N | γ < −0.5 K | 72 | 64 | 77 | 85 | AQ12 | 67 | 59 | 71 | 82 |
γ ≥ 1.0 K | 34 | 35 | 36 | 41 | AQ45 | 45 | 49 | 51 | 59 | |
Diff.γ | −38 | −29 | −41 | −44 | Diff.AQ | −22 | −11 | −20 | −23 | |
RH | γ < −0.5 K | 63 | 60 | 77 | 83 | AQ12 | 68 | 70 | 81 | 82 |
γ ≥ 1.0 K | 78 | 83 | 90 | 86 | AQ45 | 76 | 75 | 89 | 87 | |
Diff.γ | 15 | 23 | 13 | 3 | Diff.AQ | 9 | 6 | 9 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łupikasza, E.B.; Niedźwiedź, T. Relationships between Vertical Temperature Gradients and PM10 Concentrations during Selected Weather Conditions in Upper Silesia (Southern Poland). Atmosphere 2022, 13, 125. https://doi.org/10.3390/atmos13010125
Łupikasza EB, Niedźwiedź T. Relationships between Vertical Temperature Gradients and PM10 Concentrations during Selected Weather Conditions in Upper Silesia (Southern Poland). Atmosphere. 2022; 13(1):125. https://doi.org/10.3390/atmos13010125
Chicago/Turabian StyleŁupikasza, Ewa Bożena, and Tadeusz Niedźwiedź. 2022. "Relationships between Vertical Temperature Gradients and PM10 Concentrations during Selected Weather Conditions in Upper Silesia (Southern Poland)" Atmosphere 13, no. 1: 125. https://doi.org/10.3390/atmos13010125
APA StyleŁupikasza, E. B., & Niedźwiedź, T. (2022). Relationships between Vertical Temperature Gradients and PM10 Concentrations during Selected Weather Conditions in Upper Silesia (Southern Poland). Atmosphere, 13(1), 125. https://doi.org/10.3390/atmos13010125