Reaction Characteristics of NOx and N2O in Selective Non-Catalytic Reduction Using Various Reducing Agents and Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental and Modeling Conditions
3. Results and Discussion
3.1. Reactor Temperature Profile
3.2. NOx Reduction Performances of Ammonia, Urea, and Methane
3.3. CH4-SNCR in the Presence of Additives (Na2CO3 and CH3OH)
3.4. Reaction Modeling
3.4.1. Sensitivity Analysis Using CHEMKIN III
3.4.2. Identification of CH4-SNCR Reaction Pathways Using Fortran
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amoatey, P.; Omidvarborna, H.; Baawain, M.S.; Al-Mamun, A. Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). Process Saf. Environ. Prot. 2019, 123, 215–228. [Google Scholar] [CrossRef]
- Munawer, M.E. Human health and environmental impacts of coal combustion and post-combustion wastes. J. Sustain. Min. 2018, 17, 87–96. [Google Scholar] [CrossRef]
- Deng, J.; Wang, X.; Wei, Z.; Wang, L.; Wang, C.; Chen, Z. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Sci. Total Environ. 2021, 766, 144319. [Google Scholar] [CrossRef] [PubMed]
- Rolón, B.G.; Hernández, C.M. Effect of additives for the reduction of NOx in the corrosion of overheating pipes. Eng. Fail. Anal. 2020, 118, 104902. [Google Scholar] [CrossRef]
- Van Caneghem, J.; De Greef, J.; Block, C.; Vandecasteele, C. NOx reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: A case study. J. Clean. Prod. 2016, 112, 4452–4460. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, P.; Chen, Y.; Wang, Y.; Ding, Q.; Sui, Z.; Chen, H.; Shen, Z.; Wu, X. A basic comprehensive study on synergetic effects among the metal oxides in CeO2-WO3/TiO2 NH3-SCR catalyst. Chem. Eng. J. 2021, 421, 127833. [Google Scholar] [CrossRef]
- Lee, G.-W.; Shon, B.-H.; Yoo, J.-G.; Jung, J.-H.; Oh, K.-J. The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process. J. Ind. Eng. Chem. 2008, 14, 457–467. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Czerwińska, J.; Szymańska, O.; Bujak, J. Simultaneous NOx and dioxin removal in the SNCR process. Sustainability 2020, 12, 5766. [Google Scholar] [CrossRef]
- Bae, S.W.; Roh, S.A.; Kim, S.D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process. Chemosphere 2006, 65, 170–175. [Google Scholar] [CrossRef]
- Cai, J.; Zheng, W.; Wang, Q. Effects of hydrogen peroxide, sodium carbonate, and ethanol additives on the urea-based SNCR process. Sci. Total Environ. 2021, 772, 145551. [Google Scholar] [CrossRef]
- Daood, S.S.; Yelland, T.S.; Nimmo, W. Selective non-catalytic reduction–Fe-based additive hybrid technology. Fuel 2017, 208, 353–362. [Google Scholar] [CrossRef]
- Ayoub, M.; Irfan, M.F.; Yoo, K.-S. Surfactants as additives for NOx reduction during SNCR process with urea solution as reducing agent. Energy Convers. Manag. 2011, 52, 3083–3088. [Google Scholar] [CrossRef]
- Gholami, F.; Tomas, M.; Gholami, Z.; Vakili, M. Technologies for the nitrogen oxides reduction from flue gas: A review. Sci. Total Environ. 2020, 714, 136712. [Google Scholar] [CrossRef] [PubMed]
- Skalska, K.; Miller, J.S.; Ledakowicz, S. Trends in NO abatement: A review. Sci. Total Environ. 2010, 408, 3976–3989. [Google Scholar] [CrossRef] [PubMed]
- Wypiór, T.; Krzyżyńska, R. Effect of ammonia and ammonium compounds on wet-limestone flue gas desulfurization process from a coal-based power plant—Preliminary industrial scale study. Fuel 2020, 281, 118564. [Google Scholar] [CrossRef]
- Jiang, Y.; McAdam, E.; Zhang, Y.; Heaven, S.; Banks, C.; Longhurst, P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process Eng. 2019, 32, 100899. [Google Scholar] [CrossRef]
- Shin, Y.; Jung, Y.; Cho, C.P.; Pyo, Y.D.; Jang, J.; Kim, G.; Kim, T.M. NOx abatement and N2O formation over urea-SCR systems with zeolite supported Fe and Cu catalysts in a nonroad diesel engine. Chem. Eng. J. 2020, 381, 122751. [Google Scholar] [CrossRef]
- Javed, M.T.; Irfan, N.; Gibbs, B.M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manag. 2007, 83, 251–289. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, N.; Yang, J.; Xu, B. Experimental and modeling study of the effect of CH4 and pulverized coal on selective non-catalytic reduction process. Chemosphere 2008, 73, 650–656. [Google Scholar] [CrossRef]
- Yao, T.; Duan, Y.; Yang, Z.; Li, Y.; Wang, L.; Zhu, C.; Zhou, Q.; Zhang, J.; She, M.; Liu, M. Experimental characterization of enhanced SNCR process with carbonaceous gas additives. Chemosphere 2017, 177, 149–156. [Google Scholar] [CrossRef]
- Świeboda, T.; Krzyżyńska, R.; Bryszewska-Mazurek, A.; Mazurek, W.; Czapliński, T.; Przygoda, A. Advanced approach to modeling of pulverized coal boilers for SNCR process optimization-review and recommendations. Int. J. Thermofluids 2020, 7–8, 100051. [Google Scholar] [CrossRef]
- Liu, Q.; Proust, C.; Gomez, F.; Luart, D.; Len, C. The prediction multi-phase, multi reactant equilibria by minimizing the Gibbs energy of the system: Review of available techniques and proposal of a new method based on a Monte Carlo technique. Chem. Eng. Sci. 2020, 216, 115433. [Google Scholar] [CrossRef]
- Reynier, P.; D’Ammando, G.; Bruno, D. Review: Modelling chemical kinetics and convective heating in giant planet entries. Prog. Aerosp. Sci. 2018, 96, 1–22. [Google Scholar] [CrossRef]
- Liu, Z.; Consalvi, J.-L.; Kong, W. An exponential integrator with Schur–Krylov approximation to accelerate combustion chemistry computation. Combust. Flame 2019, 203, 180–189. [Google Scholar] [CrossRef]
- Wang, Y.; Movaghar, A.; Wang, Z.; Liu, Z.; Sun, W.; Egolfopoulos, F.N.; Chen, Z. Laminar flame speeds of methane/air mixtures at engine conditions: Performance of different kinetic models and power-law correlations. Combust. Flame 2020, 218, 101–108. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, X.; Li, T.; Li, S. Effect of HCl and CO on nitrogen oxide formation mechanisms within the temperature window of SNCR. Fuel 2020, 267, 117231. [Google Scholar] [CrossRef]
- Bai, H.; Wang, Z.; Zhang, L.; Jiang, H.; Lu, Y.; Chen, J.; Zhang, G. Study of the wall effect of the sample position well of the Frisch-grid ionization chamber. Appl. Radiat. Isot. 2017, 125, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, R.; Wang, S.; Chen, Q.; Yang, H. End wall effect on particle motion in a chute flow. Particuology 2021, 54, 102–108. [Google Scholar] [CrossRef]
- Glarborg, P.; Miller, J.A.; Ruscic, B.; Klippenstein, S.J. Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 2018, 67, 31–68. [Google Scholar] [CrossRef] [Green Version]
- Si, M.; Shen, B.; Adwek, G.; Xiong, L.; Liu, L.; Yuan, P.; Gao, H.; Liang, C.; Guo, Q. Review on the NO removal from flue gas by oxidation methods. J. Environ. Sci. 2021, 101, 49–71. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A. review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Strokal, M.; Kroeze, C. Nitrous oxide (N2O) emissions from human waste in 1970–2050. Curr. Opin. Environ. Sustain. 2014, 9–10, 108–121. [Google Scholar] [CrossRef]
- Winiwarter, W.; Klimont, Z. The role of N-gases (N2O, NOx, NH3) in cost-effective strategies to reduce greenhouse gas emissions and air pollution in Europe. Curr. Opin. Environ. Sustain. 2011, 3, 438–445. [Google Scholar] [CrossRef]
- Cao, Q.; Wu, S.; Lui, H.; Liu, D.; Qiu, P. Experimental and modeling study of the effects of multicomponent gas additives on selective non-catalytic reduction process. Chemosphere 2009, 76, 1199–1205. [Google Scholar] [CrossRef]
- Adelman, B.J.; Beutel, T.; Lei, G.-D.; Sachtler, W.M.H. On the mechanism of selective NOx reduction with alkanes over Cu/ZSM-5. Appl. Catal. B 1996, 11, L1–L9. [Google Scholar] [CrossRef]
- Niu, S.; Han, K.; Lu, C. An experimental study on the effect of operating parameters and sodium additive on the NOxOUT process. Process Saf. Environ. Prot. 2011, 89, 121–126. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, J.; Zhou, Z.; Chen, Z.; Liu, J.; Cen, K. Action of oxygen and sodium carbonate in the urea-SNCR process. Combust. Flame 2009, 156, 1785–1790. [Google Scholar] [CrossRef]
- An, S.; Jung, J.C. Kinetic modeling of thermal reactor in Claus process using CHEMKIN-PRO software. Case Stud. Therm. Eng. 2020, 21, 100694. [Google Scholar] [CrossRef]
- Schwer, D.A.; Tolsma, J.E.; Green, W.H.; Barton, P.I. On upgrading the numerics in combustion chemistry codes. Combust. Flame 2002, 128, 270–291. [Google Scholar] [CrossRef]
- Lijuan, C.; Zhijun, L.; Li, H.; Boxi, S.; Lingya, Z.; Yue, W. Influence of CO2 concentration and inlet temperature on adsorption path of lean NOx trap. Energy Procedia 2019, 158, 4383–4388. [Google Scholar] [CrossRef]
- Xi, S.; Xue, J.; Wang, F.; Li, X. Reduction of large-size combustion mechanisms of n-decane and n-dodecane with an improved sensitivity analysis method. Combust. Flame 2020, 222, 326–335. [Google Scholar] [CrossRef]
- Ali, G.; Zhang, T.; Wu, W.; Zhou, Y. Effect of hydrogen addition on NOx formation mechanism and pathways in MILD combustion of H2-rich low calorific value fuels. Int. J. Hydrogen Energy 2020, 45, 9200–9210. [Google Scholar] [CrossRef]
- Chemkin Theory Manual, 2016, ANSYS Reaction Design. Available online: https://personal.ems.psu.edu/~radovic/ChemKin_Theory_PaSR.pdf (accessed on 18 August 2021).
- Zhou, D.; Yang, W.; Li, J.; Tay, K.L.; Kraft, M. Combustion modeling in RCCI engines with a hybrid characteristic time combustion and closed reactor model. Appl. Energy 2018, 227, 665–671. [Google Scholar] [CrossRef]
- Samu, V.; Varga, T.; Rahinov, I.; Cheskis, S.; Turányi, T. Determination of rate parameters based on NH2 concentration profiles measured in ammonia-doped methane–air flames. Fuel 2018, 212, 679–683. [Google Scholar] [CrossRef]
Carrier Gas | Ar |
---|---|
Gas Conditions | |
NO | 900 ppm |
NO2 | 10 vol% of NO |
O2 | 0, 3, 5, 7, 10 vol% |
Experimental and Modeling Conditions | |
Reducing agent | (NH2)2CO, CH4, NH3 |
NSR of reducing agent | 1.0, 1.5, 2.0 |
Additive to reducing agent | Na2CO3, CH3OH |
NSR of additive | 0.0, 0.2, 0.3 (0.1 interval) |
Temperature | 800, 825, ..., 1075, 1100 °C |
Residence time | 1.0 s |
Modeling database | NASA CEA code, GRI Mech 3.0 code |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, P.-M.; Park, Y.-K.; Dong, J.-I. Reaction Characteristics of NOx and N2O in Selective Non-Catalytic Reduction Using Various Reducing Agents and Additives. Atmosphere 2021, 12, 1175. https://doi.org/10.3390/atmos12091175
Park P-M, Park Y-K, Dong J-I. Reaction Characteristics of NOx and N2O in Selective Non-Catalytic Reduction Using Various Reducing Agents and Additives. Atmosphere. 2021; 12(9):1175. https://doi.org/10.3390/atmos12091175
Chicago/Turabian StylePark, Poong-Mo, Young-Kwon Park, and Jong-In Dong. 2021. "Reaction Characteristics of NOx and N2O in Selective Non-Catalytic Reduction Using Various Reducing Agents and Additives" Atmosphere 12, no. 9: 1175. https://doi.org/10.3390/atmos12091175
APA StylePark, P. -M., Park, Y. -K., & Dong, J. -I. (2021). Reaction Characteristics of NOx and N2O in Selective Non-Catalytic Reduction Using Various Reducing Agents and Additives. Atmosphere, 12(9), 1175. https://doi.org/10.3390/atmos12091175