Incorporation of Shipping Activity Data in Recurrent Neural Networks and Long Short-Term Memory Models to Improve Air Quality Predictions around Busan Port
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Data
2.2. RNN-LSTM
2.2.1. Overview
2.2.2. Implementation of RNN-LSTM
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moon, D.H.; Kwon, S.O.; Kim, S.Y.; Kim, W.J. Air pollution and incidence of lung cancer by histological type in Korean adults: A Korean national health insurance service health examinee cohort study. Int. J. Environ. Res. Public Health 2020, 17, 915. [Google Scholar] [CrossRef] [Green Version]
- Koenig, J.Q. Health Effects of Particulate Matter. In Health Effects of Ambient Air Pollution; Springer: Boston, MA, USA, 2000. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, B.; Zhou, J.; Bi, Y.; Xu, S.; Zhou, B. The epidemiological trends in the burden of lung cancer attributable to PM2.5 exposure in China. BMC Public Health 2021, 21, 1–8. [Google Scholar] [CrossRef]
- WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005; World Health Organization: Geneva, Switzerland, 2005; pp. 1–21. [Google Scholar]
- Bailey, D.; Plenys, T.; Solomon, G.M.; Campbell, T.R.; Feuer, G.R.; Masters, J. Harboring Pollution Strategy to Clean Up U.S. Natural Resources Defense Council; Transportation Research Board: Washington, DC, USA, 2004; p. 85. [Google Scholar]
- Han, C.H. Air pollution reduction strategies of world major ports. Int. Commer. Law Rev. 2010, 48, 27–56. [Google Scholar]
- EPA. Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories; ICF International: Fairfax, VA, USA, 2009. [Google Scholar]
- IMO. Guidelines for Consistent Implementation of the 0.50% Sulphur Limit under Marpol; International Maritime Organization: London, UK, 2020. [Google Scholar]
- Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- EPA. The Community Multiscale Air Quality (CMAQ) Developer Guide; United States Environmental Protection Agency: Washington, DC, USA, 2019.
- Schönig, S.; Jasinski, R.; Ackermann, L.; Jablonski, S. Deep Learning Process Prediction with Discrete and Continuous Data Features. In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering, Funchal, Portugal, 23–24 March 2018; pp. 314–319. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Kalchbrenner, N.; Danihelka, I.; Graves, A. Grid long short-term memory. arXiv 2015, arXiv:1507.01526. [Google Scholar]
- Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.; Bengio, Y. A recurrent latent variable model for sequential data. arXiv 2015, arXiv:1506.02216. [Google Scholar]
- Bayer, J.; Osendorfer, C. Learning stochastic recurrent networks. arXiv 2014, arXiv:1411.7610. [Google Scholar]
- Wu, Z.; Wu, X.; Wang, Y.; He, S. PM2.5/PM10 ratio prediction based on a long short-term memory neural network in Wuhan, China. Geosci. Model. Dev. 2020, 13, 1499–1511. [Google Scholar] [CrossRef] [Green Version]
- Xayasouk, T.; Lee, H.M.; Lee, G. Air pollution prediction using long short-term memory (LSTM) and deep autoencoder (DAE) models. Sustainability 2020, 12, 2570. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Chiao, H.; Abimannan, S.; Huang, Y.; Tsai, Y.; Lin, K. An LSTM-based aggregated model for air pollution forecasting. Atmos. Pollut. Res. 2020, 11, 1451–1463. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, I.; Song, C.H.; Lee, K.; Yun, J.W.; Kim, H.K.; Jeon, M.; Lee, J.; Han, K.M. Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model. Atmos. Chem. Phys. 2019, 19, 12935–12951. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Raischel, F.; Lind, P.G. Air quality prediction using optimal neural networks with stochastic variables. Atmos. Environ. 2013, 79, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Jiang, H.; Wang, J.; Zhou, J. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 2014, 496, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Wang, T.; Song, G.; Hu, W.; Li, X.; Zhang, Z. Deep air learning: Interpolation, prediction, and feature analysis of fine-grained air quality. IEEE Trans. Knowl. Data Eng. 2017, 30, 2285–2297. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Deng, F.; Cai, Y.; Chen, J. Long short-term memory-fully connected (LSTM-FC) neural network for PM2.5 concentration prediction. Chemosphere 2019, 220, 486–492. [Google Scholar] [CrossRef]
- Audigier, V.; Husson, F.; Josse, J. A principal component method to impute missing values for mixed data. Adv. Data Anal. Classif. 2016, 10, 5–26. [Google Scholar] [CrossRef]
- Ilin, A.; Raiko, T. Practical approaches to principal component analysis in the presence of missing values. JMLR 2010, 11, 1957–2000. [Google Scholar]
- Rencher, A.C. Methods of Multivariate Analysis, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Hair, F. Multivariate Data Analysis: An Overview. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 12, pp. 904–907. [Google Scholar]
- Akima, H. A New Method of Interpolation and Smooth Curve Fitting. J. ACM 1970, 17, 589–602. [Google Scholar] [CrossRef]
- Reddy, V.; Mohanty, S. Deep Air: Forecasting Air Pollution in Beijing, China. Environ. Sci. 2017. Available online: https://www.ischool.berkeley.edu/sites/default/files/sproject_attachments/deep-air-forecasting_final.pdf (accessed on 30 August 2021).
- Hochreiter, S. Long short-term memory. Neural. Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Hogrefe, C.; Rao, S.T.; Kasibhatla, P.; Kallos, G.; Tremback, C.J.; Hao, W.; Olerud, D.; Xiu, A.; McHenry, J.; Alapaty, K. Evaluating the performance of regional-scale photochemical modeling systems: Part I—Meteorological predictions. Atmos. Environ. 2001, 35, 4159–4174. [Google Scholar] [CrossRef]
- Chang, L.; Scorgie, Y.; Duc, H.N.; Monk, K.; Fuchs, D.; Trieu, T. Major source contributions to ambient PM2.5 and exposures within the New South Wales Greater Metropolitan Region. Atmosphere 2019, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Tesche, W.; Mcnally, D.E.; Tremback, C. Operational Evaluation of the MM5 Meteorological Model over the Continental United States: Protocol for Annual and Episodic Evaluation; U.S. EPA: Washington, DC, USA, 2002; p. 51.
- Emery, C.; Tai, E.; Yarwood, G. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes; ENVIRON International Corporation: Novato, CA, USA, 2001; Volume 31, p. 235. [Google Scholar]
Type | Variables | Unit |
---|---|---|
Air quality data | PM2.5, PM10 | µg/m3 |
SO2, O3, NO2, CO | ppm | |
Meteorological data | Temperature | °C |
Dew point | °C | |
Pressure | hPa | |
Wind speed | m/s | |
Wind Direction | Degree | |
Rainfall | mm | |
Shipping activity data | Anchored ships | ea |
Type | Item | Count | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Air quality data a | PM2.5 1 at North Port | 10,129 | 21.84 | 15.08 | 2.0 | 133.0 |
PM2.5 at New Port | 10,034 | 22.04 | 14.57 | 2.0 | 108.0 | |
Meteorological data b | Temperature 2 | 10,200 | 14.47 | 8.17 | −4.9 | 34.8 |
Dew point | 10,200 | 6.47 | 11.59 | −24.2 | 26.9 | |
Pressure 3 | 10,200 | 1015.36 | 7.41 | 986.8 | 1035.5 | |
Wind speed 4 | 10,189 | 3.04 | 1.66 | 0 | 14.3 | |
Shipping activity data c (Weight tonnage) | All at North Port 5 | 10,200 | 310.84 | 38.93 | 230 | 437 |
Over 2000 tons at North Port | 10,200 | 70.66 | 9.65 | 42 | 107 | |
All at New Port | 10,200 | 30.59 | 4.94 | 12 | 49 | |
Over 2000 tons at New Port | 10,200 | 17.23 | 3.82 | 3 | 29 |
Input Time_steps, AQM_DATA, Meteorological_data,Ship_activity_data Output RNN-LSTM Function model 1 train_data = input (shape = (time_steps, AQM_DATA, Metorological_data,Ship_activity_data)) 2 train_data = fit_transform(train_data) 3 train_lstm = mxnet.gluon.rnn.LSTM (Hidden_node, Hidden_Layer,dropout = 0.2) (train_data) 4 output = Dense(1)(train_lstm) 5 model = model(input,output) 6 return model |
Type | Configure | Settings |
---|---|---|
Data partition | Training set | 8760 |
Validation set | 744 | |
Prediction set | 696 | |
Hyperparameter | Optimizer | Adam |
Batch size | 100 | |
Learning rate | 0.001 | |
Drop out | 0.2 | |
Loss function | L2 Loss |
Scenario NO. | Input Data | Site |
---|---|---|
Case 1 | AQMS 1 + ASOS 2 | North Port in Busan |
Case 2 | AQMS + ASOS + all anchored ships | |
Case 3 | AQMS + ASOS + anchored ships over 2000 tons | |
Case 4 | AQMS + ASOS | New Port in Busan |
Case 5 | AQMS + ASOS + all anchored ships | |
Case 6 | AQMS + ASOS + anchored ships over 2000 tons |
Scenario No. | Optimal Training Parameters | NMB (%) | MNGE (%) | RMSE (μg/m3) | IOA | ||
---|---|---|---|---|---|---|---|
Hidden Node | Hidden Layer | Epochs | |||||
Case 1 | 120 | 1 | 20 | −4.6 | 23.21 | 4.91 | 0.974 |
Case 2 | 120 | 1 | 10 | 1.2 | 23.99 | 4.91 | 0.974 |
Case 3 | 120 | 1 | 15 | 2.8 | 24.28 | 4.88 | 0.975 |
Case 4 | 120 | 1 | 20 | −3.5 | 23.79 | 5.87 | 0.969 |
Case 5 | 120 | 1 | 20 | −0.9 | 25.09 | 5.87 | 0.970 |
Case 6 | 120 | 1 | 15 | 4.6 | 27.45 | 5.89 | 0.969 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, H.; Jeon, H.; Youn, C.; Kim, H. Incorporation of Shipping Activity Data in Recurrent Neural Networks and Long Short-Term Memory Models to Improve Air Quality Predictions around Busan Port. Atmosphere 2021, 12, 1172. https://doi.org/10.3390/atmos12091172
Hong H, Jeon H, Youn C, Kim H. Incorporation of Shipping Activity Data in Recurrent Neural Networks and Long Short-Term Memory Models to Improve Air Quality Predictions around Busan Port. Atmosphere. 2021; 12(9):1172. https://doi.org/10.3390/atmos12091172
Chicago/Turabian StyleHong, Hyunsu, Hyungjin Jeon, Cheong Youn, and Hyeonsoo Kim. 2021. "Incorporation of Shipping Activity Data in Recurrent Neural Networks and Long Short-Term Memory Models to Improve Air Quality Predictions around Busan Port" Atmosphere 12, no. 9: 1172. https://doi.org/10.3390/atmos12091172
APA StyleHong, H., Jeon, H., Youn, C., & Kim, H. (2021). Incorporation of Shipping Activity Data in Recurrent Neural Networks and Long Short-Term Memory Models to Improve Air Quality Predictions around Busan Port. Atmosphere, 12(9), 1172. https://doi.org/10.3390/atmos12091172