Extreme Aerosol Events at Mesa Verde, Colorado: Implications for Air Quality Management
Abstract
:1. Introduction
2. Methods
2.1. IMPROVE Site and Data Description
2.2. Meteorological Data and Calculations
2.3. Trajectory Modeling
2.4. NAAPS and Air Mass Type Assignments
3. Results and Discussion
3.1. Meteorological Profile
3.2. PM Profile
3.3. Demonstration of Extreme PM2.5 Events
3.4. Monthly Profile of Extreme PM2.5 Events
3.5. Day of Week Profile of Extreme PM2.5 Events
3.6. Interannual Profile of Extreme PM2.5 Events
3.7. Chemical Characteristics of Extreme PM2.5 Events
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Air Pollution. Available online: https://www.who.int/health-topics/air-pollution (accessed on 1 June 2021).
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3. [Google Scholar] [CrossRef]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosbie, E.; Youn, J.S.; Balch, B.; Wonaschütz, A.; Shingler, T.; Wang, Z.; Conant, W.C.; Betterton, E.A.; Sorooshian, A. On the competition among aerosol number, size and composition in predicting CCN variability: A multi-annual field study in an urbanized desert. Atmos. Chem. Phys. 2015, 15, 6943–6958. [Google Scholar] [CrossRef] [Green Version]
- Raman, A.; Arellano, A.F.; Sorooshian, A. Decreasing Aerosol Loading in the North American Monsoon Region. Atmosphere 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorooshian, A.; Wonaschütz, A.; Jarjour, E.G.; Hashimoto, B.I.; Schichtel, B.A.; Betterton, E.A. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Woodhouse, C.A.; Meko, D.M.; MacDonald, G.M.; Stahle, D.W.; Cook, E.R. A 1200-year perspective of 21st century drought in southwestern North America. Proc. Natl. Acad. Sci. USA 2010, 107, 21283–21288. [Google Scholar] [CrossRef] [Green Version]
- Letcher, T.; Cotton, W.R. The Effect of Pollution Aerosol on Wintertime Orographic Precipitation in the Colorado Rockies Using a Simplified Emissions Scheme to Predict CCN Concentrations. J. Appl. Meteorol. Climatol. 2014, 53, 859–872. [Google Scholar] [CrossRef]
- Malm, W.; Sisler, J. Spatial patterns of major aerosol species and selected heavy metals in the United States. Fuel Process. Technol. 2000, 65, 473–501. [Google Scholar] [CrossRef]
- Malm, W.C.; Schichtel, B.A.; Pitchford, M.L.; Ashbaugh, L.L.; Eldred, R.A. Spatial and monthly trends in speciated fine particle concentration in the United States. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Schichtel, B.A.; Malm, W.C.; Bench, G.; Fallon, S.; McDade, C.E.; Chow, J.C.; Watson, J.G. Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Matichuk, R.; Barbaris, B.; Betterton, E.A.; Hori, M.; Murao, N.; Ohta, S.; Ward, D. A Decade of Aerosol and Gas Precursor Chemical Characterization at Mt. Lemmon, Arizona (1992 to 2002). J. Meteorol. Soc. Japan 2006, 84, 653–670. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, N.; Clements, A.; Fraser, M.; Herckes, P. Chemical speciation of PM(2.5) and PM(10) in south Phoenix, AZ, USA. J. Air Waste Manag. Assoc. 2011, 61, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Hand, J.L.; Schichtel, B.A.; Pitchford, M.; Malm, W.C.; Frank, N.H. Seasonal composition of remote and urban fine particulate matter in the United States. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Hand, J.L.; Schichtel, B.A.; Malm, W.C.; Pitchford, M.L. Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010. Atmos. Chem. Phys. 2012, 12, 10353–10365. [Google Scholar] [CrossRef] [Green Version]
- Youn, J.-S.; Wang, Z.; Wonaschütz, A.; Arellano, A.; Betterton, E.A.; Sorooshian, A. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert. Geophys. Res. Lett. 2013, 40, 3468–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hand, J.L.; Gill, T.E.; Schichtel, B.A. Spatial and seasonal variability in fine mineral dust and coarse aerosol mass at remote sites across the United States. J. Geophys. Res. Atmos. 2017, 122, 3080–3097. [Google Scholar] [CrossRef]
- Reynolds, R.L.; Munson, S.M.; Fernandez, D.; Goldstein, H.L.; Neff, J.C. Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States. Aeolian Res. 2016, 23, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, A.; Shingler, T.; Harpold, A.; Feagles, C.W.; Meixner, T.; Brooks, P.D. Aerosol and precipitation chemistry in the southwestern United States: Spatiotemporal trends and interrelationships. Atmos. Chem. Phys. 2013, 13, 7361–7379. [Google Scholar] [CrossRef] [Green Version]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Lopez, D.H.; Rabbani, M.R.; Crosbie, E.; Raman, A.; Arellano, A.F.; Sorooshian, A. Frequency and Character of Extreme Aerosol Events in the Southwestern United States: A Case Study Analysis in Arizona. Atmosphere 2016, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Malm, W.C.; Sisler, J.F.; Huffman, D.; Eldred, R.A.; Cahill, T.A. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. Atmos. 1994, 99, 1347–1370. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in US air quality studies. Atmos. Environ. 1993, 27, 1185–1201. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Lowenthal, D.H.; Pritchett, L.C.; Frazier, C.A.; Neuroth, G.R.; Robbins, R. Differences in the carbon composition of source profiles for diesel- and gasoline-powered vehicles. Atmos. Environ. 1994, 28, 2493–2505. [Google Scholar] [CrossRef]
- Cahill, T.A.; Ashbaugh, L.L.; Eldred, R.A.; Feeney, P.J.; Kusko, B.H.; Flocchini, R.G. Comparisons Between Size-Segregated Resuspended Soil Samples and Ambient Aerosols in the Western United States. In Atmospheric Aerosol; American Chemical Society: Washington, DC, USA, 1981; Volume 167, pp. 269–285. [Google Scholar]
- Pitchford, M.; Flocchini, R.G.; Draftz, R.G.; Cahill, T.A.; Ashbaugh, L.L.; Eldred, R.A. Silicon in submicron particles in the southwest. Atmos. Environ. 1981, 15, 321–333. [Google Scholar] [CrossRef]
- Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W.J.; Eubank, M.; Splitt, M.; Onton, J. Weather Support for the 2002 Winter Olympic and Paralympic Games. Bull. Am. Meteorol. Soc. 2002, 83, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Horel, J.; Splitt, M.; Dunn, L.; Pechmann, J.; White, B.; Ciliberti, C.; Lazarus, S.; Slemmer, J.; Zaff, D.; Burks, J. Mesowest: Cooperative Mesonets In The Western United States. Bull. Am. Meteorol. Soc. 2002, 83, 211–226. [Google Scholar] [CrossRef]
- Utah, U.O. MesoWest. Available online: https://mesowest.utah.edu/ (accessed on 5 August 2021).
- Center, W.R.C. SOD USA Climate Archive. Available online: https://wrcc.dri.edu/summary/Climsmco.html (accessed on 1 June 2021).
- Office, N.P. National Atmospheric Deposition Program (NRSP-3). Available online: http://nadp.slh.wisc.edu/data/sites/siteDetails.aspx?net=NTN&id=CO99 (accessed on 5 August 2021).
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Acker, J.G.; Leptoukh, G. Online analysis enhances use of NASA Earth science data. EOS 2007, 88, 14–17. [Google Scholar] [CrossRef]
- AQS, U. EPA AirData Air Quality System (AQS) Monitors. Available online: https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=5f239fd3e72f424f98ef3d5def547eb5&extent=-146.2334,13.1913,-46.3896,56.5319 (accessed on 5 August 2021).
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 2059–2077. [Google Scholar] [CrossRef]
- Aldhaif, A.M.; Lopez, D.H.; Dadashazar, H.; Painemal, D.; Peters, A.J.; Sorooshian, A. An Aerosol Climatology and Implications for Clouds at a Remote Marine Site: Case Study over Bermuda. J. Geophys. Res. Atmos. 2021, 126, e2020JD034038. [Google Scholar] [CrossRef]
- Corral, A.F.; Dadashazar, H.; Stahl, C.; Edwards, E.-L.; Zuidema, P.; Sorooshian, A. Source Apportionment of Aerosol at a Coastal Site and Relationships with Precipitation Chemistry: A Case Study over the Southeast United States. Atmosphere 2020, 11, 1212. [Google Scholar] [CrossRef]
- Crosbie, E.; Sorooshian, A.; Monfared, N.A.; Shingler, T.; Esmaili, O. A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data. Atmosphere 2014, 5, 178–197. [Google Scholar] [CrossRef] [Green Version]
- Dadashazar, H.; Ma, L.; Sorooshian, A. Sources of pollution and interrelationships between aerosol and precipitation chemistry at a central California site. Sci. Total Environ. 2019, 651, 1776–1787. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Sun, T.; Che, H.; Qi, B.; Wang, Y.; Dong, Y.; Xia, X.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H.; et al. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: Effect of the regional transport of different aerosol types over eastern China. Atmos. Chem. Phys. 2018, 18, 2949–2971. [Google Scholar] [CrossRef] [Green Version]
- Stahl, C.; Cruz, M.T.; Bañaga, P.A.; Betito, G.; Braun, R.A.; Aghdam, M.A.; Cambaliza, M.O.; Lorenzo, G.R.; MacDonald, A.B.; Hilario, M.R.A.; et al. Sources and characteristics of size-resolved particulate organic acids and methanesulfonate in a coastal megacity: Manila, Philippines. Atmos. Chem. Phys. 2020, 20, 15907–15935. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Lynch, P.; Reid, J.S.; Westphal, D.L.; Zhang, J.; Hogan, T.F.; Hyer, E.J.; Curtis, C.A.; Hegg, D.A.; Shi, Y.; Campbell, J.R.; et al. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geosci. Model Dev. 2016, 9, 1489–1522. [Google Scholar] [CrossRef] [Green Version]
- Hogan, T.F.; Liu, M.; Ridout, J.A.; Peng, M.S.; Whitcomb, T.R.; Ruston, B.C.; Reynolds, C.A.; Eckermann, S.D.; Moskaitis, J.R.; Baker, N.L.; et al. The Navy Global Environmental Model. Oceanography 2014, 27, 116–125. [Google Scholar] [CrossRef]
- Hand, J.L.; White, W.H.; Gebhart, K.A.; Hyslop, N.P.; Gill, T.E.; Schichtel, B.A. Earlier onset of the spring fine dust season in the southwestern United States. Geophys. Res. Lett. 2016, 43, 4001–4009. [Google Scholar] [CrossRef] [Green Version]
- Kavouras, I.G.; Etyemezian, V.; Xu, J.; DuBois, D.W.; Green, M.; Pitchford, M. Assessment of the local windblown component of dust in the western United States. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Tong, D.Q.; Dan, M.; Wang, T.; Lee, P. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring. Atmos. Chem. Phys. 2012, 12, 5189–5205. [Google Scholar] [CrossRef] [Green Version]
- Wells, K.C.; Witek, M.; Flatau, P.; Kreidenweis, S.M.; Westphal, D.L. An analysis of seasonal surface dust aerosol concentrations in the western US (2001–2004): Observations and model predictions. Atmos. Environ. 2007, 41, 6585–6597. [Google Scholar] [CrossRef]
- Prabhakar, G.; Sorooshian, A.; Toffol, E.; Arellano, A.F.; Betterton, E.A. Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region. Atmos. Environ. 2014, 92, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, J.S.; Braun, R.A.; Bradley, T.; Dadashazar, H.; MacDonald, A.B.; Aldhaif, A.A.; Aghdam, M.A.; Mardi, A.H.; Xian, P.; Sorooshian, A. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 2017, 122, 8951–8966. [Google Scholar] [CrossRef]
- Jaffe, D.; Snow, J.; Cooper, O. The 2001 Asian dust events: Transport and impact on surface aerosol concentrations in the U.S. EOS 2003, 84, 501–507. [Google Scholar] [CrossRef]
- Kavouras, I.G.; Etyemezian, V.; DuBois, D.W.; Xu, J.; Pitchford, M. Source reconciliation of atmospheric dust causing visibility impairment in Class I areas of the western United States. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- VanCuren, R.A.; Cahill, T.A. Asian aerosols in North America: Frequency and concentration of fine dust. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, D.; Hafner, W.; Chand, D.; Westerling, A.; Spracklen, D. Interannual Variations in PM2.5 due to Wildfires in the Western United States. Environ. Sci. Technol. 2008, 42, 2812–2818. [Google Scholar] [CrossRef] [PubMed]
- Mardi, A.H.; Dadashazar, H.; MacDonald, A.B.; Braun, R.A.; Crosbie, E.; Xian, P.; Thorsen, T.J.; Coggon, M.M.; Fenn, M.A.; Ferrare, R.A.; et al. Biomass Burning Plumes in the Vicinity of the California Coast: Airborne Characterization of Physicochemical Properties, Heating Rates, and Spatiotemporal Features. J. Geophys. Res. Atmos. 2018, 123, 13560–13582. [Google Scholar] [CrossRef]
- Braun, R.A.; Dadashazar, H.; MacDonald, A.B.; Aldhaif, A.M.; Maudlin, L.C.; Crosbie, E.; Aghdam, M.A.; Hossein Mardi, A.; Sorooshian, A. Impact of Wildfire Emissions on Chloride and Bromide Depletion in Marine Aerosol Particles. Environ. Sci. Technol. 2017, 51, 9013–9021. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.M.; Capps, S.L.; Daniel, J.S.; Frost, G.J.; White, W.H. Weekly patterns of aerosol in the United States. Atmos. Chem. Phys. 2008, 8, 2729–2739. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.L.; Rosenfeld, D.; Kim, K.-M.; Yoo, J.-M.; Lee, M.-I.; Hahnenberger, M. Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Hilario, M.R.A.; Cruz, M.T.; Bañaga, P.A.; Betito, G.; Braun, R.A.; Stahl, C.; Cambaliza, M.O.; Lorenzo, G.R.; MacDonald, A.B.; AzadiAghdam, M.; et al. Characterizing Weekly Cycles of Particulate Matter in a Coastal Megacity: The Importance of a Seasonal, Size-Resolved, and Chemically Speciated Analysis. J. Geophys. Res. Atmos. 2020, 125, e2020JD032614. [Google Scholar] [CrossRef]
- Barmet, P.; Kuster, T.; Muhlbauer, A.; Lohmann, U. Weekly cycle in particulate matter versus weekly cycle in precipitation over Switzerland. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Gong, D.; Zhou, Z.; Guo, Y. Robustness of the aerosol weekly cycle over Southeastern China. Atmos. Environ. 2012, 61, 409–418. [Google Scholar] [CrossRef]
- Harrison, R.M.; Beddows, D.C.S.; Dall’Osto, M. PMF Analysis of Wide-Range Particle Size Spectra Collected on a Major Highway. Environ. Sci. Technol. 2011, 45, 5522–5528. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Dadashazar, H.; Braun, R.A.; MacDonald, A.B.; Aghdam, M.A.; Maudlin, L.C.; Sorooshian, A. Size-resolved characteristics of water-soluble particulate elements in a coastal area: Source identification, influence of wildfires, and diurnal variability. Atmos. Environ. 2019, 206, 72–84. [Google Scholar] [CrossRef]
- Singh, M.; Jaques, P.A.; Sioutas, C. Size distribution and diurnal characteristics of particle-bound metals in source and receptor sites of the Los Angeles Basin. Atmos. Environ. 2002, 36, 1675–1689. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef]
- Cruz, M.T.; Bañaga, P.A.; Betito, G.; Braun, R.A.; Stahl, C.; Aghdam, M.A.; Cambaliza, M.O.; Dadashazar, H.; Hilario, M.R.; Lorenzo, G.R.; et al. Size-resolved composition and morphology of particulate matter during the southwest monsoon in Metro Manila, Philippines. Atmos. Chem. Phys. 2019, 19, 10675–10696. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics, 3rd ed.; Wiley-Interscience: New York, NY, USA, 2016. [Google Scholar]
- Nriagu, J.O. A global assessment of natural sources of atmospheric trace metals. Nature 1989, 338, 47–49. [Google Scholar] [CrossRef]
- Aldhaif, A.M.; Lopez, D.H.; Dadashazar, H.; Sorooshian, A. Sources, frequency, and chemical nature of dust events impacting the United States East Coast. Atmos. Environ. 2020, 231, 117456. [Google Scholar] [CrossRef] [PubMed]
- Arimoto, R.; Kim, Y.J.; Kim, Y.P.; Quinn, P.K.; Bates, T.S.; Anderson, T.L.; Gong, S.; Uno, I.; Chin, M.; Huebert, B.J.; et al. Characterization of Asian Dust during ACE-Asia. Glob. Planet Change 2006, 52, 23–56. [Google Scholar] [CrossRef]
- Alfaro, S.; Gomes, L.; Rajot, J.; Lafon, S.; Gaudichet, A.; Chatenet, B.; Maille, M.; Cautenet, G.; Lasserre, F.; Cachier, H. Chemical and optical characterization of aerosols measured in spring 2002 at the ACE-Asia supersite, Zhenbeitai, China. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Arimoto, R.; Zhu, G.H.; Chen, T.; Zhang, G.Y. Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus B Chem. Phys. Meteorol. 1998, 50, 317–330. [Google Scholar] [CrossRef] [Green Version]
Months | Asian Dust | Non-Asian Dust | Smoke | Other |
---|---|---|---|---|
January | 0 | 0 | 0 | 12 |
February | 0 | 1 | 1 | 5 |
March | 6 | 2 | 5 | 7 |
April | 12 | 2 | 5 | 3 |
May | 9 | 0 | 5 | 3 |
June | 0 | 3 | 12 | 3 |
July | 0 | 0 | 13 | 5 |
August | 0 | 0 | 19 | 4 |
September | 0 | 2 | 10 | 7 |
October | 0 | 1 | 4 | 11 |
November | 1 | 2 | 0 | 13 |
December | 0 | 1 | 0 | 10 |
Total | 28 | 14 | 74 | 83 |
Day | Total | Asian Dust | Non-Asian Dust | Smoke | Other |
---|---|---|---|---|---|
Sunday | 25 | 2 | 2 | 9 | 12 |
Monday | 20 | 5 | 2 | 8 | 5 |
Tuesday | 25 | 3 | 2 | 10 | 9 |
Wednesday | 23 | 3 | 2 | 7 | 12 |
Thursday | 29 | 3 | 1 | 15 | 10 |
Friday | 30 | 4 | 4 | 14 | 8 |
Saturday | 30 | 5 | 1 | 11 | 13 |
Parameter | Asian Dust | Non-Asian Dust | Smoke | Other |
---|---|---|---|---|
PM2.5 (µg m−3) | 11.64 ± 7.88 | 9.67 ± 9.64 | 9.45 ± 4.68 | 6.18 ± 3.10 |
PM10 (µg m−3) | 44.24 ± 61.59 | 27.24 ± 23.54 | 21.95 ± 17.53 | 14.03 ± 15.20 |
PM10:PM2.5 | 2.99 ± 1.10 | 2.98 ± 1.19 | 2.27 ± 1.03 | 2.01 ± 1.15 |
SO42− (µg m−3) | 0.96 ± 0.50 | 0.75 ± 0.24 | 0.80 ± 0.33 | 0.86 ± 0.39 |
NO3− (µg m−3) | 0.32 ± 0.14 | 0.27 ± 0.14 | 0.23 ± 0.18 | 0.31 ± 0.37 |
OC (µg m−3) | 0.76 ± 0.71 | 0.87 ± 0.67 | 2.35 ± 1.92 | 1.29 ± 2.07 |
EC (µg m−3) | 0.08 ± 0.08 | 0.11 ± 0.11 | 0.28 ± 0.23 | 0.23 ± 0.38 |
K (µg m−3) | 0.24 ± 0.21 | 0.16 ± 0.17 | 0.12 ± 0.09 | 0.07 ± 0.07 |
Fine Soil (µg m−3) | 8.57 ± 9.52 | 5.10 ± 7.30 | 2.80 ± 2.82 | 1.96 ± 2.40 |
Ni (ng m−3) | 0.14 ± 0.17 | 0.18 ± 0.18 | 0.54 ± 2.83 | 0.76 ± 2.31 |
Se (ng m−3) | 0.14 ± 0.13 | 0.20 ± 0.14 | 0.18 ± 0.12 | 0.27 ± 0.23 |
Fe:Ca | 0.68 ± 0.24 | 0.66 ± 0.26 | 0.61 ± 0.24 | 0.67 ± 0.27 |
K:Fe | 0.68 ± 0.15 | 1.21 ± 1.79 | 1.55 ± 1.41 | 1.12 ± 1.18 |
Si:Al | 2.43 ± 0.29 | 2.55 ± 0.26 | 2.46 ± 0.30 | 2.57 ± 0.36 |
Al:Ca | 1.49 ± 0.73 | 1.17 ± 0.42 | 1.26 ± 0.54 | 1.25 ± 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, M.E.; Garfield, J.G.; Corral, A.F.; Edwards, E.-L.; Zeider, K.; Sorooshian, A. Extreme Aerosol Events at Mesa Verde, Colorado: Implications for Air Quality Management. Atmosphere 2021, 12, 1140. https://doi.org/10.3390/atmos12091140
Gonzalez ME, Garfield JG, Corral AF, Edwards E-L, Zeider K, Sorooshian A. Extreme Aerosol Events at Mesa Verde, Colorado: Implications for Air Quality Management. Atmosphere. 2021; 12(9):1140. https://doi.org/10.3390/atmos12091140
Chicago/Turabian StyleGonzalez, Marisa E., Jeri G. Garfield, Andrea F. Corral, Eva-Lou Edwards, Kira Zeider, and Armin Sorooshian. 2021. "Extreme Aerosol Events at Mesa Verde, Colorado: Implications for Air Quality Management" Atmosphere 12, no. 9: 1140. https://doi.org/10.3390/atmos12091140
APA StyleGonzalez, M. E., Garfield, J. G., Corral, A. F., Edwards, E. -L., Zeider, K., & Sorooshian, A. (2021). Extreme Aerosol Events at Mesa Verde, Colorado: Implications for Air Quality Management. Atmosphere, 12(9), 1140. https://doi.org/10.3390/atmos12091140