Wind Speed Profile Statistics from Acoustic Soundings at a Black Sea Coastal Site
Abstract
:1. Introduction
2. Study Area and Remote Sensing Equipment
3. Data Analysis and Overview
- Calm interval—at wind speed values ≥ 0 ms−1, but <0.5 ms−1
- 1 ms−1 interval—at wind speed values ≥ 0.5 ms−1, but <1.5 ms−1
- 2 ms−1 interval—at wind speed values ≥ 1.5 ms−1, but <2.5 ms−1
- …
- 40 ms−1 interval—at wind speed values ≥39.5 ms−1;
4. Results
4.1. All Air Masses
4.2. Land and Sea Air Masse
5. Discussion
6. Conclusions
7. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engelbart, D.; Monna, W.; Nash, J.; Mätzler, C. Integrated Ground-Based Remote-Sensing Stations for Atmospheric Profiling; 978-92-898-0050-1; Publications Office of the European Union—COST Office: Luxembourg, 2009; p. 398. [Google Scholar]
- Cimini, D.; Marzano, F.S.; Visconti, G. Integrated Ground-Based Observing Systems; Cimini, D., Marzano, F.S., Visconti, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; p. 309. [Google Scholar] [CrossRef]
- Emeis, S. Surface-Based Remote Sensing of the Atmospheric Boundary Layer, 1st ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Peña, A.; Floors, R.; Sathe, A.; Gryning, S.-E.; Wagner, R.; Courtney, M.S.; Larsén, X.G.; Hahmann, A.N.; Hasager, C.B. Ten Years of Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark. Bound.-Layer Meteorol. 2016, 158, 1–26. [Google Scholar] [CrossRef] [Green Version]
- COST Action ES0702 Final Report: European Ground-Based Observations of Essential Variables for Climate and Operational Meteorology; Illingworth, A.; Ruffieux, D.; Cimini, D.; Lohnert, U.; Haeffelin, M.; Lehmann, V. (Eds.) PUB1062; COST Office: Shenzhen, China, 2013; p. 141. [Google Scholar]
- Coulter, R.L.; Kallistratova, M.A. Two decades of progress in sodar techniques: A review of 11 ISARS proceedings. Theor. Appl. Clim. 2004, 85, 3–19. [Google Scholar] [CrossRef]
- Emeis, S.; Münkel, C.; Vogt, S.; Müller, W.J.; Schäfer, K. Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos. Environ. 2004, 38, 273–286. [Google Scholar] [CrossRef]
- Kallistratova, M.A.; Petenko, I.V.; Kouznetsov, R.; Kulichkov, S.N.; Chkhetiani, O.G.; Chunchusov, I.P.; Lyulyukin, V.; Zaitseva, D.V.; Vazaeva, N.V.; Perepelkin, V.G.; et al. Sodar Sounding of the Atmospheric Boundary Layer: Review of Studies at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. Izv. Atmos. Ocean. Phys. 2018, 54, 242–256. [Google Scholar] [CrossRef]
- Wandinger, U.; Freudenthaler, V.; Baars, H.; Amodeo, A.; Engelmann, R.; Mattis, I.; Groß, S.; Pappalardo, G.; Giunta, A.; D’Amico, G.; et al. EARLINET instrument intercomparison campaigns: Overview on strategy and results. Atmos. Meas. Tech. 2016, 9, 1001–1023. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.; McKeogh, E. LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes. Remote Sens. 2011, 3, 1871–1901. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.A. A note on estimating the height of the convective internal boundary layer near shore. Bound.-Layer Meteorol. 1986, 35, 311–316. [Google Scholar] [CrossRef]
- Batchvarova, E.; Cai, X.; Gryning, S.-E.; Steyn, D. Modelling Internal Boundary-Layer Development in a Region with a Complex Coastline. Bound.-Layer Meteorol. 1999, 90, 1–20. [Google Scholar] [CrossRef]
- Batchvarova, E.; Gryning, S.-E. Wind climatology, atmospheric turbulence and internal boundary-layer development in Athens during the MEDCAPHOT-TRACE experiment. Atmos. Environ. 1998, 32, 2055–2069. [Google Scholar] [CrossRef]
- Simpson, J.E. Sea Breeze and Local Winds; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Floors, R.; Vincent, C.; Gryning, S.-E.; Pena, A.; Batchvarova, E. The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements and Numerical Modelling. Bound.-Layer Meteorol. 2013, 147, 469–491. [Google Scholar] [CrossRef]
- Gryning, S.-E.; Floors, R.; Peña, A.; Batchvarova, E.; Brümmer, B. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites. Bound.-Layer Meteorol. 2016, 159, 329–348. [Google Scholar] [CrossRef] [Green Version]
- Gryning, S.-E.; Batchvarova, E.; Floors, R.R.; Peña, A.; Brümmer, B.; Hahmann, A.N.; Mikkelsen, T. Long-Term Profiles of Wind and Weibull Distribution Parameters up to 600 m in a Rural Coastal and an Inland Suburban Area. Bound.-Layer Meteorol. 2013, 150, 167–184. [Google Scholar] [CrossRef]
- Lun, I.Y.; Lam, J.C. A study of Weibull parameters using long-term wind observations. Renew. Energy 2000, 20, 145–153. [Google Scholar] [CrossRef]
- He, Y.; Monahan, A.H.; Jones, C.G.; Dai, A.; Biner, S.; Caya, D.; Winger, K. Probability distributions of land surface wind speeds over North America. J. Geophys. Res. Space Phys. 2010, 115, 115. [Google Scholar] [CrossRef]
- Wijnant, I.L.; van den Brink, H.W.; Stepek, A. North Sea Wind Climatology Part 1: A Review of Existing Wind Atlases; Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment: De Bilt, The Netherlands, 2014; p. 66.
- Stevens, M.J.M.; Smulders, P.T. The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Eng. 1979, 3, 132–145. [Google Scholar]
- Batchvarova, E.; Gryning, S.-E.; Floors, R.; Vincent, C.; Peña, A.; Mikkelsen, T. Measurements and modeling of the wind profile up to 600 meters at a flat coastal site. In Air Pollution Modeling and its Application XXII; Steyn, D.G., Builtjes, P.J.H., Timmermans, R.M.A., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 565–569. [Google Scholar] [CrossRef]
- Gryning, S.-E.; Batchvarova, E.; Floors, R.R. A Study on the Effect of Nudging on Long-Term Boundary Layer Profiles of Wind and Weibull Distribution Parameters in a Rural Coastal Area. J. Appl. Meteorol. Clim. 2013, 52, 1201–1207. [Google Scholar] [CrossRef] [Green Version]
- Wieringa, J. Shapes of annual frequency distributions of wind speed observed on high meteorological masts. Bound.-Layer Meteorol. 1989, 47, 85–110. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Dabberdt, W.F.; Kropfli, R.A. Observations and Numerical Model Simulations of the Atmospheric Boundary Layer in the Santa Barbara Coastal Region. J. Appl. Meteorol. 1991, 30, 652–673. [Google Scholar] [CrossRef] [Green Version]
- De Leo, L.; Federico, S.; Sempreviva, A.M.; Pasqualoni, L.; Avolio, E.; Bellecci, C. Study of the development of the sea breeze and its micro-scale structure at a coastal site using a Multi-Tone Sodar system. In Proceedings of the 14th International Symposium for the Advancement of Boundary Layer Remote Sensing, Copenhagen, Denmark, 23–25 June 2008; p. 9. [Google Scholar]
- Prabha, T.V.; Venkatesan, R.; Mursch-Radlgruber, E.; Rengarajan, G.; Jayanthi, N. Thermal internal boundary layer characteristics at a tropical coastal site as observed by a mini-SODAR under varying synoptic conditions. J. Earth Syst. Sci. 2002, 111, 63–77. [Google Scholar] [CrossRef]
- Petenko, I.; Argentini, S.; Casasanta, G.; Kallistratova, M.; Sozzi, R.; Viola, A. Wavelike Structures in the Turbulent Layer During the Morning Development of Convection at Dome C, Antarctica. Bound.-Layer Meteorol. 2016, 161, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Barantiev, D.Y.; Kirova, H.I.; Gueorguiev, O.A. WRF simulations against sodar measurements of extreme winds and local breeze circulations serial events. Adv. Sci. Res. 2020, 17, 109–113. [Google Scholar] [CrossRef]
- Feudo, T.L.; Calidonna, C.R.; Avolio, E.; Sempreviva, A.M. Study of the Vertical Structure of the Coastal Boundary Layer Integrating Surface Measurements and Ground-Based Remote Sensing. Sensors 2020, 20, 6516. [Google Scholar] [CrossRef]
- Lyulyukin, V.; Kallistratova, M.; Zaitseva, D.; Kuznetsov, D.; Artamonov, A.; Repina, I.; Petenko, I.; Kouznetsov, R.; Pashkin, A. Sodar Observation of the ABL Structure and Waves over the Black Sea Offshore Site. Atmosphere 2019, 10, 811. [Google Scholar] [CrossRef] [Green Version]
- Sabev, L.; Stanev, S. Climate Regions of Bulgaria and Their Climate; Krastanov, L., Ed.; State Publishing House “Science and Art”: Sofia, Bulgaria, 1959; Volume V, p. 174. [Google Scholar]
- Barantiev, D.; Batchvarova, E.; Novitsky, M. Breeze circulation classification in the coastal zone of the town of Ahtopol based on data from ground based acoustic sounding and ultrasonic anemometer. Bulg. J. Meteorol. Hydrol. 2017, 22, 24. [Google Scholar]
- ScintecAG. Scintec Flat Array Sodars—Hardware Manual (SFAS, MFAS, XFAS) Including RASS RAE1 and WindRASS, Version 1.03 ed.; Manual, S., Ed.; Scintec AG: Rottenburg am Neckar, Germany, 2011; p. 64. [Google Scholar]
- Indhumathy, D.; Seshaiah, C.V.; Sukkiramathi, K. Estimation of Weibull parameters for wind speed calculation at Kanyakumari in India. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 8340–8345. [Google Scholar]
- Papoulis, A.; Pillai, S.U. Probability, Random Variables, and Stochastic Processes, 4th ed.; McGraw-Hill Europe: Berkshire, England, 2002; pp. 75–90. [Google Scholar]
- Papanchev, T. A modified approach for parameters estimation of the Weibull distribution for interval data and zero or few failures. In Journal of Notices of the Union of Scientists—Varna; Technical Sciences Series; Union of Scientists—Varna: Varna, Bulgaria, 2013; Volume 1, pp. 53–57. [Google Scholar]
- Pessanha, J.; Oliveira, F.; Souza, R. Teaching Statistical Methods in Engineering Courses through Wind Power Data. Rev. Ensino Eng. 2015, 34, 85–92. [Google Scholar] [CrossRef]
- Barantiev, D.; Batchvarova, E.; Novitsky, M. Exploration of the Coastal Boundary Layer in Ahtopol through Remote Acoustic Sounding of the Atmosphere. In Proceedings of the 2nd Nacional Congress on Physical Sciences and 41st National Conference on Physics Education Matters, Sofia, Bulgaria, 25–29 September 2013. [Google Scholar]
- Barantiev, D.; Novitsky, M.; Batchvarova, E. Meteorological observations of the coastal boundary layer structure at the Bulgarian Black Sea coast. Adv. Sci. Res. 2011, 6, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Batchvarova, E.; Barantiev, D.; Novitsky, M. Costal Boundary layer wind profile based on SODAR data—Bulgarian contribution to COST Acton ES0702. In Proceedings of the 16th International Symposium for the Advancement of Boundary-Layer Remote Sensing—ISARS, Boulder, CO, USA, 5–8 June 2012. [Google Scholar]
- Bachvarova, E.; Spassova, T.; Marinski, J. Air Pollution and Specific Meteorological Conditions at the Adjacent Areas of Sea Ports. IFAC PapersOnLine 2018, 51, 378–383. [Google Scholar] [CrossRef]
Characteristics of Data Samples, Meteorological Parameters and Profiles | Type of Air Masses (Column)/Jul 2008–Jan 2016/ | |||
---|---|---|---|---|
All Air Masses (1) | Marine Air Masses (2) | Land Air Masses (3) | ||
Number of days with data | 2357 | 821 | 561 | |
Number of profiles involved in the study | 327,009 | 47 712 | 45,554 | |
Representation of the total period (%) | 82.2 | 12 | 11.4 | |
Height (m) with maximum in scale parameter profile of the Weibull distribution | 50 | 80–90 | 50 | |
80 | 230–250 | 80 | ||
270–300 | 520 | 290–300 | ||
560 | ||||
Height (m) with maximum in shape parameter profile of the Weibull distribution | 50 | 50 | 50 | |
80 | 80 | 80 | ||
260 | 270–280 | 270–290 | ||
390–400 | 370 | 430 | ||
450 | ||||
510 | ||||
550–560 | ||||
Reversal height (m) of diurnal wind speed | inhomogeneous data | 90 | 100 | 40 |
homogeneous data | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barantiev, D.; Batchvarova, E. Wind Speed Profile Statistics from Acoustic Soundings at a Black Sea Coastal Site. Atmosphere 2021, 12, 1122. https://doi.org/10.3390/atmos12091122
Barantiev D, Batchvarova E. Wind Speed Profile Statistics from Acoustic Soundings at a Black Sea Coastal Site. Atmosphere. 2021; 12(9):1122. https://doi.org/10.3390/atmos12091122
Chicago/Turabian StyleBarantiev, Damyan, and Ekaterina Batchvarova. 2021. "Wind Speed Profile Statistics from Acoustic Soundings at a Black Sea Coastal Site" Atmosphere 12, no. 9: 1122. https://doi.org/10.3390/atmos12091122
APA StyleBarantiev, D., & Batchvarova, E. (2021). Wind Speed Profile Statistics from Acoustic Soundings at a Black Sea Coastal Site. Atmosphere, 12(9), 1122. https://doi.org/10.3390/atmos12091122