Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Forcing from UV Irradiance and MEE
3.2. Stratospheric, Tropospheric, and Surface Effects from UV Irradiance
3.3. The NAO Index
3.4. Stratospheric, Tropospheric, and Surface Effects from UV Irradiance
3.5. Stratospheric, Tropospheric, and Surface Effects from UV Irradiance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubash, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar Influences on Climate. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Gray, L.J.; Scaife, A.A.; Mitchell, D.M.; Osprey, S.; Ineson, S.; Hardiman, S.; Butchart, N.; Knight, J.; Sutton, R.; Kodera, K. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos. 2013, 118, 420. [Google Scholar] [CrossRef] [Green Version]
- Guttu, S.; Orsolini, Y.; Stordal, F.; Otter, O.H.; Omrani, N.E. The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation. Environ. Res. Lett. 2021, 16. [Google Scholar] [CrossRef]
- Chen, H.; Ma, H.; Li, X.; Sun, S. Solar influences on spatial patterns of Eurasian winter temperature and atmospheric general circulation anomalies. J. Geophys. Res. Atmos. 2015, 120, 8642–8657. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Chen, H.; Gray, L.; Zhou, L.; Li, X.; Wang, R.; Zhu, S. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Chiodo, G.; Oehrlein, J.; Polvani, L.M.; Fyfe, J.C.; Smith, A.K. Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation. Nat. Geosci. 2019, 12, 94–99. [Google Scholar] [CrossRef]
- Kodera, K.; Kuroda, Y. Dynamical response to the solar cycle. J. Geophys. Res. Atmos. 2002, 107, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Scaife, A.A.; Ineson, S.; Knight, J.R.; Gray, L.; Kodera, K.; Smith, D.M. A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett. 2013, 40, 434–439. [Google Scholar] [CrossRef]
- Andrews, M.B.; Knight, J.R.; Gray, L.J. A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960–2009. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Visbeck, M.; Chassignet, E.P.; Curry, R.G.; Delworth, T.L.; Dickson, R.R.; Krahmann, G. The ocean’s response to North Atlantic oscillation variability. Geophys. Monograph Am. Geophys. Union Washington 2003, 134, 113–146. [Google Scholar] [CrossRef] [Green Version]
- Taws, S.L.; Marsh, R.; Wells, N.C.; Hirschi, J. Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yukimoto, S.; Kodera, K. Annular modes forced from the stratosphere and interactions with the oceans. J. Meteorol. Soc. Jpn. 2007, 85, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Gray, L.J.; Woollings, T.J.; Andrews, M.; Knight, J. Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Q. J. R. Meteorol. Soc. 2016, 142, 1890–1903. [Google Scholar] [CrossRef] [Green Version]
- Yukimoto, S.; Kodera, K.; Thiéblemont, R. Delayed North Atlantic response to solar forcing of the stratospheric polar vortex. Sci. Online Lett. Atmos. 2017, 13, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Omrani, N.E.; Ogawa, F.; Nakamura, H.; Keenlyside, N.; Lubis, S.W.; Matthes, K. Key Role of the Ocean Western Boundary currents in shaping the Northern Hemisphere climate. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Thiéblemont, R.; Matthes, K.; Omrani, N.E.; Kodera, K.; Hansen, F. Solar forcing synchronizes decadal North Atlantic climate variability. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otterå, O.H.; Bentsen, M.; Drange, H.; Suo, L. External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci. 2010, 3, 688–694. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Orsolini, Y.J.; Senan, R.; Vitart, F.; Balsamo, G.; Weisheimer, A.; Doblas-Reyes, F.J. Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010. Clim. Dyn. 2016. [Google Scholar] [CrossRef] [Green Version]
- Stockdale, T.N.; Molteni, F.; Ferranti, L. Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophys. Res. Lett. 2015, 42, 1173–1179. [Google Scholar] [CrossRef]
- Scaife, A.A.; Arribas, A.; Blockley, E.; Brookshaw, A.; Clark, R.T.; Dunstone, N.; Eade, R.; Fereday, D.; Folland, C.K.; Gordon, M.; et al. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 2014. [Google Scholar] [CrossRef] [Green Version]
- Honda, M.; Yamane, S.; Nakamura, H. Impacts of the Aleutian-Icelandic low seasaw on surface climate during the twentieth century. J. Clim. 2005, 18, 2793–2802. [Google Scholar] [CrossRef]
- Li, F.; Orsolini, Y.J.; Wang, H.; Gao, Y.; He, S. Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic Multidecadal Oscillation. Adv. Atmos. Sci. 2018. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.M.; Misios, S.; Gray, L.J.; Tourpali, K.; Matthes, K.; Hood, L.; Schmidt, H.; Chiodo, G.; Thiéblemont, R.; Rozanov, E.; et al. Solar signals in CMIP-5 simulations: The stratospheric pathway. Q. J. R. Meteorol. Soc. 2015, 141, 2390–2403. [Google Scholar] [CrossRef] [Green Version]
- Misios, S.; Mitchell, D.M.; Gray, L.J.; Tourpali, K.; Matthes, K.; Hood, L.; Schmidt, H.; Chiodo, G.; Thiéblemont, R.; Rozanov, E.; et al. Solar signals in CMIP-5 simulations: Effects of atmosphere-ocean coupling. Q. J. R. Meteorol. Soc. 2015, 142, 928–941. [Google Scholar] [CrossRef]
- Ineson, S.; Scaife, A.A.; Knight, J.R.; Manners, J.C.; Dunstone, N.J.; Gray, L.J.; Haigh, J.D. Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci. 2011, 4, 753–757. [Google Scholar] [CrossRef] [Green Version]
- Lean, J.L.; DeLand, M.T. How does the Sun’s spectrum vary? J. Clim. 2012, 25, 2555–2560. [Google Scholar] [CrossRef]
- Cullens, C.Y.; England, S.L.; Garcia, R. The 11 year solar cycle signature on wave-driven dynamics in WACCM. J. Geophys. Res. Sp. Phys. 2016, 121, 3484–3496. [Google Scholar] [CrossRef] [Green Version]
- Tartaglione, N.; Toniazzo, T.; Orsolini, Y.; Otterå, O.H. Impact of solar irradiance and geomagnetic activity on polar NOx, ozone and temperature in WACCM simulations. J. Atmos. Sol.-Terr. Phys. 2020, 209, 105398. [Google Scholar] [CrossRef]
- Andersson, M.E.; Verronen, P.T.; Marsh, D.R.; Seppälä, A.; Päivärinta, S.M.; Rodger, C.J.; Clilverd, M.A.; Kalakoski, N.D.; Van De Kamp, M. Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons. J. Geophys. Res. Atmos. 2018, 123, 607–622. [Google Scholar] [CrossRef]
- Orsolini, Y.J.; Smith-Johnsen, C.; Marsh, D.R.; Stordal, F.; Rodger, C.J.; Verronen, P.T.; Clilverd, M.A. Mesospheric Nitric Acid Enhancements During Energetic Electron Precipitation Events Simulated by WACCM-D. J. Geophys. Res. Atmos. 2018. [Google Scholar] [CrossRef] [Green Version]
- Guttu, S.; Orsolini, Y.; Stordal, F.; Limpasuvan, V.; Marsh, D.R. WACCM simulations: Decadal winter-to-spring climate impact on middle atmosphere and troposphere from medium energy electron precipitation. J. Atmos. Sol.-Terr. Phys. 2020, 209, 105382. [Google Scholar] [CrossRef]
- Rozanov, E.; Calisto, M.; Egorova, T.; Peter, T.; Schmutz, W. Influence of the Precipitating Energetic Particles on Atmospheric Chemistry and Climate. Surv. Geophys. 2012, 33, 483–501. [Google Scholar] [CrossRef] [Green Version]
- Sinnhuber, M.; Funke, B. Energetic electron precipitation into the atmosphere. In The Dynamic Loss of Earth’s Radiation Belts; Jaynes, A., Usanova, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–321. [Google Scholar]
- Matthes, K.; Funke, B.; Andersson, M.E.; Barnard, L.; Beer, J.; Charbonneau, P.; Clilverd, M.A.; Dudok De Wit, T.; Haberreiter, M.; Hendry, A.; et al. Solar forcing for CMIP6 (v3.2). Geosci. Model Dev. 2017. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, A.; Lu, H.; Clilverd, M.A.; Rodger, C.J. Geomagnetic activity signatures in wintertime stratosphere wind, temperature, and wave response. J. Geophys. Res. Atmos. 2013, 118, 2169–2183. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Wang, H.; Li, F.; Li, H.; Wang, C. Solar-wind-magnetosphere energy influences the interannual variability of the northern-hemispheric winter climate. Natl. Sci. Rev. 2020, 7, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Arsenovic, P.; Rozanov, E.; Stenke, A.; Funke, B.; Wissing, J.M.; Mursula, K.; Tummon, F.; Peter, T. The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate. J. Atmos. Sol.-Terr. Phys. 2016, 149, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Orsolini, Y.J.; Keenlyside, N.; Shen, M.L.; Counillon, F.; Wang, Y.G. Impact of Snow Initialization in Subseasonal-to-Seasonal Winter Forecasts with the Norwegian Climate Prediction Model. J. Geophys. Res. Atmos. 2019, 124, 10033–10048. [Google Scholar] [CrossRef] [Green Version]
- Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Roelandt, C.; Seierstad, I.A.; Hoose, C.; et al. The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 2013, 6, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Marsh, D.R.; Garcia, R.R.; Kinnison, D.E.; Boville, B.A.; Sassi, F.; Solomon, S.C.; Matthes, K. Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res. Atmos. 2007, 112, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Neale, R.B.; Gettelman, A.; Park, S.; Chen, C.; Lauritzen, P.H.; Williamson, D.L.; Conley, A.J.; Kinnison, D.; Marsh, D.; Smith, A.K.; et al. Description of the NCAR Community Atmosphere Model (CAM5). NCAR Tech. Note TN-486 2012, 1, 1–12. [Google Scholar]
- Bleck, R.; Rooth, C.; Hu, D.; Smith, L.T. Salinity-driven Thermocline Transients in a Wind- and Thermohaline-forced Isopycnic Coordinate Model of the North Atlantic. J. Phys. Oceanogr. 1992, 22, 1486–1505. [Google Scholar] [CrossRef] [Green Version]
- Coddington, O.; Lean, J.L.; Pilewskie, P.; Snow, M.; Lindholm, D. A solar irradiance climate data record. Bull. Am. Meteorol. Soc. 2016, 97, 1265–1282. [Google Scholar] [CrossRef]
- Yeo, K.L.; Ball, W.T.; Krivova, N.A.; Solanki, S.K.; Unruh, Y.C.; Morrill, J. UV solar irradiance in observations and the NRLSSI and SATIRE-S models Special Section. J. Geophys. Res. Sp. Phys. 2015, 120, 6055–6070. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Lean, J.L.; Sheeley, N.R., Jr. Modeling the Sun’s Magnetic Field and Irradiance since 1713. Astrophys. J. 2005, 625, 522–538. [Google Scholar] [CrossRef]
- Kay, J.E.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.M.; Bates, S.C.; Danabasoglu, G.; Edwards, J.; et al. The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, L.A.; Portela, M.M.; Rodrigues, R. Significant extremal dependence of a daily north atlantic oscillation index (Naoi) and weighted regionalised rainfall in a small island using the extremogram. Water 2020, 12, 2989. [Google Scholar] [CrossRef]
- Scaife, A.A.; Smith, D. A signal-to-noise paradox in climate science. NPJ Clim. Atmos. Sci. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Smith, D.M.; Scaife, A.A.; Eade, R.; Athanasiadis, P.; Bellucci, A.; Bethke, I.; Bilbao, R.; Borchert, L.F.; Caron, L.P.; Counillon, F.; et al. North Atlantic climate far more predictable than models imply. Nature 2020, 583, 796–800. [Google Scholar] [CrossRef]
- Eade, R.; Smith, D.; Scaife, A.; Wallace, E.; Dunstone, N.; Hermanson, L.; Robinson, N. Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett. 2014, 41, 5620–5628. [Google Scholar] [CrossRef]
- Dunstone, N.; Smith, D.; Scaife, A.; Hermanson, L.; Eade, R.; Robinson, N.; Andrews, M.; Knight, J. Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci. 2016, 9, 809–814. [Google Scholar] [CrossRef]
- Whittaker, I.C.; Gamble, R.J.; Rodger, C.J.; Clilverd, M.A.; Sauvaud, J.A. Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times. J. Geophys. Res. Sp. Phys. 2013. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, I.C.; Rodger, C.J.; Clilverd, M.A.; Sauvaud, J.-A. The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison. J. Geophys. Res. Sp. Phys. 2014, 119, 6386–6404. [Google Scholar] [CrossRef] [Green Version]
- Clilverd, M.A.; Rodger, C.J.; van de Kamp, M.; Verronen, P.T. Electron Precipitation from the Outer Radiation Belt During the St. Patrick’s Day Storm 2015: Observations, Modeling, and Validation. J. Geophys. Res. Sp. Phys. 2020, 125, 1–12. [Google Scholar] [CrossRef]
- Fang, X.; Randall, C.E.; Lummerzheim, D.; Wang, W.; Lu, G.; Solomon, S.C.; Frahm, R.A. Parameterization of monoenergetic electron impact ionization. Geophys. Res. Lett. 2010. [Google Scholar] [CrossRef]
Simulation | Duration (Years) | Ensemble Size |
---|---|---|
Background run | 86 | 1 |
CTRL | 12 | 25 |
SC | 12 | 25 |
SC + MEE | 12 | 25 |
Title 1 | External Variance | Internal Variance | S/N Ratio |
---|---|---|---|
SC | 1.5 | 24 | 0.06 |
SCMEE | 0.7 | 25 | 0.02 |
SC + SCMEE | 0.8 | 25 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guttu, S.; Orsolini, Y.; Stordal, F.; Otterå, O.H.; Omrani, N.-E.; Tartaglione, N.; Verronen, P.T.; Rodger, C.J.; Clilverd, M.A. Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle. Atmosphere 2021, 12, 1029. https://doi.org/10.3390/atmos12081029
Guttu S, Orsolini Y, Stordal F, Otterå OH, Omrani N-E, Tartaglione N, Verronen PT, Rodger CJ, Clilverd MA. Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle. Atmosphere. 2021; 12(8):1029. https://doi.org/10.3390/atmos12081029
Chicago/Turabian StyleGuttu, Sigmund, Yvan Orsolini, Frode Stordal, Odd Helge Otterå, Nour-Eddine Omrani, Nazario Tartaglione, Pekka T. Verronen, Craig J. Rodger, and Mark A. Clilverd. 2021. "Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle" Atmosphere 12, no. 8: 1029. https://doi.org/10.3390/atmos12081029
APA StyleGuttu, S., Orsolini, Y., Stordal, F., Otterå, O. H., Omrani, N. -E., Tartaglione, N., Verronen, P. T., Rodger, C. J., & Clilverd, M. A. (2021). Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle. Atmosphere, 12(8), 1029. https://doi.org/10.3390/atmos12081029