Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Moisture Model and Model Setups
2.3. Methods
- (i)
- During a drought episode, at least 75% of grid points over the territory of the CR had to report a 10th-percentile drought on at least one day.
- (ii)
- The onset of the episode occurred when at least 50% of the grid points reported 10th-percentile drought; it ended when the figure dropped below 50%.
- (iii)
- A decline to below 50% of grid points reporting 10th-percentile drought of up to 5 days was not counted as interruption of the drought episode.
3. Results
3.1. Areal Extent and Temporal Variability of Soil Drought
3.2. Episodes of Soil Drought
3.3. Relative Soil Saturation
3.4. Model Setups and PDSI
3.5. Soil Drought in MS4 and MS5
4. Discussion
4.1. Model Uncertainties
4.2. Different Models Setups and Expression of Soil-Drought Episodes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
MS1 | MS2 | MS3 | MS4 | MS5 |
---|---|---|---|---|
Simulation Period | ||||
1961–2020 | 1961–2020 | 1961–2020 | 1961–2020 | 1981–2020 |
Meteorological Inputs | ||||
CHMI/GCRI | CHMI/GCRI | CHMI/GCRI | CHMI/GCRI | ERA5-Land [31] |
Soil inputs | ||||
Soil type map after Tomášek [16] | Research Institute for Soil and Water Conservation [18] | Soil type map after Tomášek [16] | Research Institute for Soil and Water Conservation [18] | SoilGrids [27,28] |
Land use | ||||
CORINE Land Cover 2012 v17 | CORINE Land Cover 2012 v17 | CORINE Land Cover 2012 v17 | CORINE Land Cover 2012 v17 | ERA5-Land: high and low vegetation, bare ground |
Terrain | ||||
Digital Elevation Model over Europe (EU-DEM-3035) | Digital Elevation Model over Europe (EU-DEM-3035) | Digital Elevation Model over Europe (EU-DEM-3035) | Digital Elevation Model over Europe (EU-DEM-3035) | ERA5-Land |
Leaf area index (LAI) | ||||
- | - | - | - | ERA5-Land |
Model scheme | ||||
All the MSs feature: | ||||
reference evapotranspiration after Allen et al. [15] | ||||
snow submodule after Trnka et al. [32] | ||||
The MSs differ in: | ||||
vegetation submodule | ||||
single-crop coefficient changing dynamically as a function of GDD | single-crop coefficient changing dynamically as a function of GDD | dual-crop coefficient where Ke is dependent on topsoil water balance and Kcb changes dynamically as a function of GDD | dual-crop coefficient where Ke is dependent on topsoil water balance and Kcb changes dynamically as a function of GDD | dual-crop coefficient where Ke is dependent on topsoil water balance and Kcb changes dynamically as a function of LAI |
canopy height growing dynamically as a function of GDD | canopy height growing dynamically as a function of GDD | canopy height growing dynamically as a function of GDD up to a crop-specific maximum | canopy height growing dynamically as a function of GDD up to a crop-specific maximum | canopy height growing dynamically as a function of LAI |
constant root depth (1 m) | constant root depth (1 m) | root depth growing dynamically as a function of GDD up to a crop- specific maximum or 1.6 m | root depth growing dynamically as a function of GDD up to a crop-specific maximum or 1.6 m | root depth growing dynamically as a function of LAI up to a maximum of 2 m |
runoff submodule | ||||
fraction of precipitation (15% for >2 mm precipitation) | fraction of precipitation (15% for >2 mm precipitation) | curve number approach | curve number approach | curve number approach |
interception submodule | ||||
canopy precipitation interception considered | canopy precipitation interception considered | canopy precipitation interception considered as part of evaporation within dual-crop coefficient approach | canopy precipitation interception considered as part of evaporation within dual-crop coefficient approach | canopy precipitation interception considered as part of evaporation within dual-crop coefficient approach |
soil compartments, vertical stratification | ||||
0.0–0.4 and 0.4–1.0 m | 0.0–0.4 and 0.4–1.0 m | 0–0.1, 0.1–0.4, 0.4–1.0 and 1.0–3.0 m | 0.0–0.1, 0.1–0.4, 0.4–1.0 and 1.0–3.0 m | 0.0–0.1, 0.1–0.4, 0.4–1.0 and 1.0–2.0 m |
internal drainage and macropore water flow | ||||
only if AWR > 0.5 | only if AWR > 0.5 | only if AWR > 0.5 and AWR of the layer i-1 < AWR of the layer i | only if AWR > 0.5 and AWR of the layer i-1 < AWR of the layer i | only if AWR > 0.5 and AWR of the layer i-1 < AWR of the layer i |
References
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Trnka, M.; Hlavinka, P.; Možný, M.; Semerádová, D.; Štěpánek, P.; Balek, J.; Bartošová, L.; Zahradníček, P.; Bláhová, M.; Skalák, P.; et al. Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. Int. J. Clim. 2020, 40, 5941–5958. [Google Scholar] [CrossRef]
- Zink, M.; Samaniego, L.; Kumar, R.; Thober, S.; Mai, J.; Schäfer, D.; Marx, A. The German drought monitor. Environ. Res. Lett. 2016, 11, 074002. [Google Scholar] [CrossRef]
- Pozzi, W.; Sheffield, J.; Stefanski, R.; Cripe, D.; Pulwarty, R.; Vogt, J.; Heim, R.R.; Brewer, M.J.; Svoboda, M.; Westerhoff, R.; et al. Toward Global Drought Early Warning Capability: Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting. Bull. Am. Meteorol. Soc. 2013, 94, 776–785. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global integrated drought monitoring and prediction system. Sci. Data 2014, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; Lopez-Moreno, I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, T.; Cosh, M.; Cuenca, R.H.; Dorigo, W.; Draper, C.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.; Njoku, E.G.; Small, E.; et al. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef] [Green Version]
- Interdrought. Available online: www.interdrought.cz (accessed on 24 May 2021).
- Hlavinka, P.; Trnka, M.; Balek, J.; Semerádová, D.; Hayes, M.; Svoboda, M.; Eitzinger, J.; Možný, M.; Fischer, M.; Hunt, E.; et al. Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agric. Water Manag. 2011, 98, 1249–1261. [Google Scholar] [CrossRef]
- Trnka, M.; Brázdil, R.; Možný, M.; Štěpánek, P.; Dobrovolný, P.; Zahradníček, P.; Balek, J.; Semerádová, D.; Dubrovský, M.; Hlavinka, P.; et al. Soil moisture trends in the Czech Republic between 1961 and 2012. Int. J. Clim. 2015, 35, 3733–3747. [Google Scholar] [CrossRef]
- Trnka, M.; Brázdil, R.; Balek, J.; Semerádová, D.; Hlavinka, P.; Možný, M.; Štěpánek, P.; Dobrovolný, P.; Zahradníček, P.; Dubrovský, M.; et al. Drivers of soil drying in the Czech Republic between 1961 and 2012. Int. J. Clim. 2015, 35, 2664–2675. [Google Scholar] [CrossRef]
- Řehoř, J.; Brázdil, R.; Trnka, M.; Řezníčková, L.; Balek, J.; Možný, M. Regional effects of synoptic situations on soil drought in the Czech Republic. Theor. Appl. Clim. 2020, 141, 1383–1400. [Google Scholar] [CrossRef]
- Řehoř, J.; Brázdil, R.; Trnka, M.; Lhotka, O.; Balek, J.; Možný, M.; Štěpánek, P.; Zahradníček, P.; Mikulová, K.; Turňa, M. Soil drought and circulation types in a longitudinal transect over central Europe. Int. J. Clim. 2021, 41, 2834–2850. [Google Scholar] [CrossRef]
- Czech Statistical Office. Available online: www.czso.cz (accessed on 11 July 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Tomášek, M. Půdy České republiky (Soils of the Czech Republic); Czech Geological Service: Prague, Czech Republic, 2007. [Google Scholar]
- Štěpánek, P.; Zahradníček, P.; Farda, A. Experiences with data quality control and homogenization of daily records of various meteorological elements in the Czech Republic in the period 1961–2010. Időjárás 2013, 117, 123–141. [Google Scholar]
- Vopravil, J.; Khel, T.; Heřmanovská, D.; Holubík, O.; Huislová, P. The Map Definition of Water Retention Capacity Characteristics in Agricultural and Non-Agricultural Soils with Territorial Categorization within the Czech Republic; Certificate No. 8/14130-MZe-2018; Research Institute for Soil and Water Conservation: Prague, Czech Republic, 2018. [Google Scholar]
- Ballabio, C.; Panagos, P.; Monatanarella, L. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- U.S. Drought Monitor. Available online: http://droughtmonitor.unl.edu/ (accessed on 24 May 2021).
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; Weather Bureau Research Paper No. 45; U.S. Department of Commerce: Washington, DC, USA, 1965. [Google Scholar]
- Wells, N.; Goddard, S.; Hayes, M. A self-calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Trnka, M.; Kyselý, J.; Dubrovský, M.; Možný, M. Changes in Central-European soil-moisture availability and circulation patterns in 1881–2005. Int. J. Clim. 2009, 29, 655–672. [Google Scholar] [CrossRef]
- Schaumberger, A. Ertragsanalyse im Österreichischen Grünland Mittels GIS unter Besonderer Berücksichtigung Klimatischer Verän-derungen; Diplomarbeit. Technische Universität: Graz, Austria, 2005. [Google Scholar]
- Hengl, T.; De Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. Int. J. Clim. 2021, 41, 3881–3902. [Google Scholar] [CrossRef]
- Zahradníček, P.; Brázdil, R.; Štěpánek, P.; Trnka, M. Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. Int. J. Clim. 2021, 41, 1211–1229. [Google Scholar] [CrossRef]
- ERA5-Land Hourly Data from 1981 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land (accessed on 24 May 2021).
- Trnka, M.; Kocmánková, E.; Balek, J.; Eitzinger, J.; Ruget, F.; Formayer, H.; Hlavinka, P.; Schaumberger, A.; Horáková, V.; Možný, M. Simple snow cover model for agrometeorological applications. Agric. For. Meteorol. 2010, 150, 1115–1127. [Google Scholar] [CrossRef]
Model Setup | Season | |||
---|---|---|---|---|
JFM | AMJ | JAS | OND | |
MS1 | −1.14 | 4.20 | 2.56 | −0.19 |
MS2 | −0.98 | 4.14 | 2.13 | −0.61 |
MS3 | −0.49 | 3.41 | 2.11 | 0.21 |
MS4 | −0.66 | 3.76 | 1.73 | −0.38 |
Season | Model Setup | n | Conformity with Other Model Setups (%) | |||
---|---|---|---|---|---|---|
MS1 | MS2 | MS3 | MS4 | |||
JFM | MS1 | 179 | - | 88.8 | 78.8 | 79.9 |
MS2 | 207 | 76.8 | - | 58.9 | 62.8 | |
MS3 | 200 | 70.5 | 61.0 | - | 75.5 | |
MS4 | 160 | 89.4 | 81.3 | 94.4 | - | |
AMJ | MS1 | 365 | - | 81.6 | 47.4 | 56.7 |
MS2 | 362 | 82.3 | - | 45.6 | 55.5 | |
MS3 | 295 | 58.6 | 55.9 | - | 76.9 | |
MS4 | 308 | 67.2 | 65.3 | 73.7 | - | |
JAS | MS1 | 438 | - | 86.3 | 81.1 | 84.0 |
MS2 | 407 | 92.9 | - | 83.8 | 88.5 | |
MS3 | 403 | 88.1 | 84.6 | - | 94.5 | |
MS4 | 411 | 89.5 | 87.6 | 92.7 | - | |
OND | MS1 | 268 | - | 94.0 | 66.8 | 76.5 |
MS2 | 290 | 86.9 | - | 66.6 | 79.3 | |
MS3 | 240 | 74.6 | 80.4 | - | 84.6 | |
MS4 | 245 | 83.7 | 93.9 | 82.9 | - |
Model/PDSI Version | Season | Half-Year | ||||
---|---|---|---|---|---|---|
JFM | AMJ | JAS | OND | SHY | WHY | |
MS4 | −0.66 | 3.76 | 1.73 | −0.38 | 2.77 | −0.61 |
PDSI | 1.54 | 2.86 | 3.66 | 3.35 | 3.26 | 1.86 |
Model Setup/Characteristic | Season | Half-Year | ||||
---|---|---|---|---|---|---|
JFM | AMJ | JAS | OND | SHY | WHY | |
MS4 | 1.47 | 6.02 | 3.04 | −1.46 | 4.52 | −0.08 |
MS5 | −0.30 | 4.42 | 2.22 | −2.93 | 3.31 | −1.79 |
Correlation coefficient | 0.81 | 0.86 | 0.95 | 0.93 | 0.91 | 0.87 |
Season | Mean Temperature (°C) | Precipitation Total (mm) | Reference Evapotranspiration (mm) |
---|---|---|---|
JFM | −0.6 | 33.7 | 4.2 |
AMJ | −1.6 | 37.0 | 19.8 |
JAS | −1.6 | 33.8 | 23.8 |
OND | −0.4 | 28.5 | 6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Řehoř, J.; Brázdil, R.; Trnka, M.; Fischer, M.; Balek, J.; Štěpánek, P.; Zahradníček, P.; Semerádová, D.; Bláhová, M. Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes. Atmosphere 2021, 12, 913. https://doi.org/10.3390/atmos12070913
Řehoř J, Brázdil R, Trnka M, Fischer M, Balek J, Štěpánek P, Zahradníček P, Semerádová D, Bláhová M. Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes. Atmosphere. 2021; 12(7):913. https://doi.org/10.3390/atmos12070913
Chicago/Turabian StyleŘehoř, Jan, Rudolf Brázdil, Miroslav Trnka, Milan Fischer, Jan Balek, Petr Štěpánek, Pavel Zahradníček, Daniela Semerádová, and Monika Bláhová. 2021. "Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes" Atmosphere 12, no. 7: 913. https://doi.org/10.3390/atmos12070913
APA StyleŘehoř, J., Brázdil, R., Trnka, M., Fischer, M., Balek, J., Štěpánek, P., Zahradníček, P., Semerádová, D., & Bláhová, M. (2021). Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes. Atmosphere, 12(7), 913. https://doi.org/10.3390/atmos12070913