An Improved Weighting Method of Time-Lag-Ensemble Averaging for Hourly Precipitation Forecasts and Its Application in a Typhoon-Induced Heavy Rainfall Event
Abstract
:1. Introduction
2. Brief Introductions of the Two Models
3. Methods
3.1. Study Area
3.2. Classification of Hourly Precipitation Intensity
3.3. Time-Lag-Ensemble Forecasting Method
3.4. Optimal Integration Method of Cross-Magnitude Weight
4. Results
4.1. Revised Forecast for Typhoon Bailu
4.2. Statistical Verification for the Period from April to September in 2020
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmid, W.; Mecklenburg, S.; Joss, J. Short-term risk forecasts of heavy rainfall. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2002, 45, 121–125. [Google Scholar] [CrossRef]
- Mao, D.Y.; Zhou, Y.H.; Zhang, F.H. Mesoscale analysis of torrential rain in Hunan in early summer of 2005. Meteorology 2006, 32, 63–70. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.L.; Yang, B.; Sheng, J. Development of Operations on Forecasting Severe Convective Weather in China. Adv. Meteorol. Sci. Technol. 2018, 8, 8–18. [Google Scholar]
- Cao, C.Y.; Chen, Y.Z.; Liu, D.H.; Li, C.; Li, H.; He, J. The optical flow method and its application to nowcasting. Acta Meteorol. Sin. 2015, 73, 471–480. (In Chinese) [Google Scholar] [CrossRef]
- Tian, F.Y.; Zheng, Y.G.; Zhang, T. Sensitivity Analysis of Short-duration Heavy Rainfall Related Diagnostic Parameters with Point-area Verification. J. Appl. Meteorol. Sci. 2015, 26, 385–396. (In Chinese) [Google Scholar] [CrossRef]
- Wilson, J.W.; Feng, Y.; Chen, M.; Roberts, R.D. Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Weather Forecast. 2010, 25, 1691–1714. [Google Scholar] [CrossRef]
- Yu, X.D.; Zheng, Y.G.; Wang, X.M. The advance in the nowcasting techniques on thunderstorms and seere convection. Acta Meteorol. Sin. 2013, 70, 311–337. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, Y.G.; Zhou, K.H.; Sheng, J.; Lin, Y.; Tian, F.; Tang, W.; Lan, Y.; Zhu, W. Advances in techniques of monitoring, forecasting and warning of severe convective weather. J. Appl. Meteorol. Sci. 2015, 26, 641–657. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.B.; Wan, Q.L.; Xue, J.S.; Ding, W.Y.; Li, H.R. The impact of different physical processes and their parameterizations on forecast of a heavy rainfall in South China in annually first raining season. J. Trop. Meteorol. 2015, 21, 194–210. [Google Scholar] [CrossRef]
- Huo, Z.H.; Duan, W.S.; Zhou, F.F. Ensemble Forecasts of Tropical Cyclone Track with Conditional Nonlinear Optimal Perturbations. Adv. Atmos. Sci. 2019, 36, 231–247. [Google Scholar] [CrossRef]
- Duan, W.S.; Wang, Y.; Huo, Z.H.; Zhou, F.F. Ensemble forecastmethods for numerical weather prediction and climate prediction: Thinking and prospect. Clim. Environ. Res. 2019, 24, 396–406. (In Chinese) [Google Scholar] [CrossRef]
- Grimit, E.P.; Mass, C.F. Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Weather Forecast. 2002, 17, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.F.; Luo, Y. The effect of initial condition on numerical precipitation prediction and ensemble forecast. Sci. Meteorol. Sin. 2010, 30, 640–656. [Google Scholar] [CrossRef]
- Yan, Z.H.; Wang, Y.H.; Guo, H. Review and Prospect of operational numerical forecast of National Meteorological Center. Meteorology 2010, 36, 26–32. (In Chinese) [Google Scholar] [CrossRef]
- Benjamin, S.G.; Grell, G.A.; Brown, J.M.; Smirnova, T.G.; Bleck, R. Mesoscale weather prediction with the ruc hybrid isentropic–terrain-following coordinate model. Mon. Weather Rev. 2004, 132, 473–494. [Google Scholar] [CrossRef]
- Smith, T.L.; Benjamin, S.G.; Gutman, S.I.; Sahm, S. Short-range forecast impact from assimilation of gps-ipw observations into the rapid update cycle. Mon. Weather Rev. 2007, 135, 2914–2930. [Google Scholar] [CrossRef]
- Tang, X.; Sun, J.; Zhang, Y.; Tong, W. Constraining the Large-Scale Analysis of a Regional Rapid-Update-Cycle System for Short-Term Convective Precipitation Forecasting. J. Geophys. Res. Atmos. 2019, 124. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A.; et al. A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Mon. Weather Rev. 2016, 144, 151221155337008. [Google Scholar] [CrossRef]
- Tang, W.Y.; Zheng, Y.G. Improvement of Hourly Precipitation Forecast Using a Time-Lagged Ensemble Based on Rapid Refresh Assimilation and Forecast. Meteor. Mon. 2019, 45, 305–317. (In Chinese) [Google Scholar] [CrossRef]
- Yu, X.D.; Zheng, Y.G. Research and operational progress of severe convective weather in China. Acta Meteorol. Sin. 2020, 78, 391–418. (In Chinese) [Google Scholar] [CrossRef]
- Chen, M.; Fan, S.Y.; Zheng, Z.F.; Zhong, J. The performance of the proximity sounding based on the BJ-RUC system and its preliminary implementation in the convective potential forecast. Acta Meteorol. Sin. 2011, 69, 181–194. (In Chinese) [Google Scholar] [CrossRef]
- Chen, B.D.; Wang, X.F.; Li, H.; Zhang, L. An Overview of the Key Techniques in Rapid Refresh Assimilation and Forecast. Adv. Meteorol. Sci. Technol. 2013, 32, 29–35. [Google Scholar] [CrossRef]
- Fu, N.; Chen, B.D.; Tan, Y.; Zhou, W. Time-Lag Ensemble Forecasting Experiment and Evaluation Based on SMB-WARR. Meteorol. Mon. 2013, 39, 1247–1256. [Google Scholar] [CrossRef]
- Chen, Z.H.; Huang, Y.Y.; Wang, Q.L.; Xue, J.S.; Ding, W.Y.; Zhang, C.Z. Flood season test and analysis of rapid updating cycle assimilation forecast system. J. Trop. Meteorol. 2010, 25, 49–54. (In Chinese) [Google Scholar] [CrossRef]
- Xu, D.S.; Zhang, Y.X.; Zhang, C.Z.; Zhong, S.X.; Dai, G.F.; Chen, Z.T. Comparison of different retrieval schemes for radar reflectivity in the high-resolution regional model in South China. J. Trop. Meteorol. 2016, 32, 9–18. [Google Scholar]
- Wang, Y.H.; Peng, J.X.; Gong, Y.; Cui, C. Establishment and Real-time Forecasting Verification of AREM-RUC 3h Rapid Update Assimilation and Forecast System. Torrential Rain Disasters 2011, 30, 296–304. [Google Scholar] [CrossRef]
- Cui, F.E.; Chang, J.Z.; Yan, C.Y.; Zhang, C.Y. Cause analysis and numerical prediction test of a local heavy rain at the southern foot of Yanshan Mountain. Adv. Meteorol. Sci. Technol. 2019, 9, 53–60. (In Chinese) [Google Scholar] [CrossRef]
- Yang, L.M.; Ge, Y.; CI, D.B.; Zeng, L.Z. Prediction ability test of swc-warms model products for disastrous weather process in Tibet. Tibet. Sci. Technol. 2019, 54–56. (In Chinese) [Google Scholar] [CrossRef]
- Hoffman, R.N.; Kalnay, E. Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus 1983, 35, 100–118. [Google Scholar] [CrossRef]
- Hou, D.; Kalnay, E.; Droegemier, K.K. Objective verification of the SAMEX’ 98 ensemble forecasts. Mon. Weather Rev. 2001, 129, 73–91. [Google Scholar] [CrossRef]
- Walser, A.; Luthi, D.; Schar, C. Predictability of precipitation in a cloud-resolving model. Mon. Weather Rev. 2004, 132, 560–577. [Google Scholar] [CrossRef]
- Yuter, S.E.; Houze, R.A. Microphysical modes of precipitation growth determined by S-band vertically pointing radar in orographic precipitation during MAP. Q. J. R. Meteorol. Soc. 2010, 129, 455–476. [Google Scholar] [CrossRef]
- James, C.N.; Houze, R.A. Modification of precipitation by coastal orography in storms crossing northern California. Mon. Weather Rev. 2005, 133, 3110–3131. [Google Scholar] [CrossRef]
- Zhong, S.X. Diurnal variation of the duration and environment for heavy rainfall during the warm season in South China. Atmos. Sci. Lett. 2020, 21, 1–6. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wang, T. Numerical Simulation of a Heavy Rainstorm in Northeast China Caused by the Residual Vortex of Typhoon 1909 (Lekima). Atmosphere 2021, 12, 120. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, F.Q. An Observation-Based Ensemble Subsetting Technique for Tropical Cyclone Track Prediction. Weather Forecast. 2016, 31, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Lee, S.J. A Statistical Parameter Correction Technique for WRF Medium-Range Prediction of Near-Surface Temperature and Wind Speed Using Generalized Linear Model. Atmosphere 2018, 9, 291. [Google Scholar] [CrossRef] [Green Version]
Physical Process | GRAPES-CHAF | SMS-WARR |
---|---|---|
Microphysics | WSM6 | Thompson |
Longwave radiation | RRTM | RPTMG |
Shortwave radiation | ECMWF | RPTMG |
Near-surface layer | M-O | Monin-Obukhov (Janjic Eta) |
Boundary layer scheme | MRF | MYJ |
Land-surface process scheme | SLAB | Noah |
Observation | Hourly Precip | Magnitude |
---|---|---|
No precip | 0 ≤ x < 0.1 | 100 |
Light rain | 0.1 ≤ x < 3 | 10−2 |
Moderate rain | 3 ≤ x < 10 | 10−3 |
Heavy rain | 10 ≤ x < 20 | 10−4 |
Rainstorm | 20 ≤ x < 45 | 10−5 |
Extraordinary rainstorm | 45 ≤ x | 10−6 |
Observation | No Precip 0 ≤ G < 0.1 | Light Rain 0.1 ≤ G < 3 | Moderate Rain 3 ≤ G < 10 | Heavy Rain 10 ≤ G < 20 | Rainstorm 20 ≤ G | |
---|---|---|---|---|---|---|
Forecast | ||||||
No rain 0 ≤ R < 0.1 | 0 | −0.2 | −0.3 | −0.5 | −0.8 | |
Light rain 0.1 ≤ R < 3 | −0.2 | 1 (R − G ≤ 3) | 0.8 | 0.5 | 0 | |
Moderate rain 3 ≤ R < 10 | −0.3 | 0.8 | 1.5 (−3 ≤ R − G ≤ 5) | 1 | 0.5 | |
Heavy rain 10 ≤ R < 20 | −0.5 | 0.5 | 1 | 2 (−5 ≤ R − G ≤ 10) | 1.5 | |
Rainstorm and extraordinary rainstorm 20 ≤ R | −0.8 | 0 | 0.5 | 1.5 | 4 (G − R ≤ 10) |
Programme | Method |
---|---|
Plan 1 | Average forecast of ensemble members with the top three scores |
Plan 2 | Forecast of ensemble member with the highest score |
Plan 3 | Forecast at the nearest forecast reference time of GRAPES-CHAF |
Plan 4 | Forecast at the nearest forecast reference time of SMS-WARR |
Program | Score during Typhoon Process | Score of Maximum Precipitation Period | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CMW | MAE | RMSE | CC | * POD (%) | * FAR (%) | CMW | MAE | RMSE | CC | * POD (%) | * FAR (%) | |
Plan 1 | 0.078 | 0.835 | 2.121 | 0.239 | 50.535 | 50.674 | 0.081 | 0.813 | 2.162 | 0.185 | 55.5674 | 57.264 |
Plan 2 | 0.057 | 0.857 | 2.440 | 0.188 | 41.526 | 52.421 | 0.061 | 0.845 | 2.635 | 0.106 | 45.683 | 55.573 |
Plan 3 | 0.057 | 0.859 | 2.442 | 0.200 | 40.682 | 53.319 | 0.060 | 0.866 | 2.557 | 0.221 | 42.678 | 60.732 |
Plan 4 | 0.045 | 0.846 | 2.466 | 0.156 | 36.998 | 51.002 | 0.046 | 0.994 | 2.767 | 0.126 | 38.895 | 64.965 |
Program | CMW | MAE | RMSE | CC | * POD (%) | * FAR (%) |
---|---|---|---|---|---|---|
Plan 1 | 0.034 | 0.718 | 2.101 | 0.202 | 32.967 | 54.492 |
Plan 2 | 0.026 | 0.778 | 2.220 | 0.142 | 29.534 | 53.381 |
Plan 3 | 0.014 | 1.057 | 2.823 | 0.130 | 23.693 | 56.014 |
Plan 4 | 0.021 | 0.702 | 2.048 | 0.251 | 22.130 | 52.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Xu, L.; Lan, M.; Chen, J. An Improved Weighting Method of Time-Lag-Ensemble Averaging for Hourly Precipitation Forecasts and Its Application in a Typhoon-Induced Heavy Rainfall Event. Atmosphere 2021, 12, 875. https://doi.org/10.3390/atmos12070875
Zhou L, Xu L, Lan M, Chen J. An Improved Weighting Method of Time-Lag-Ensemble Averaging for Hourly Precipitation Forecasts and Its Application in a Typhoon-Induced Heavy Rainfall Event. Atmosphere. 2021; 12(7):875. https://doi.org/10.3390/atmos12070875
Chicago/Turabian StyleZhou, Li, Lin Xu, Mingcai Lan, and Jingjing Chen. 2021. "An Improved Weighting Method of Time-Lag-Ensemble Averaging for Hourly Precipitation Forecasts and Its Application in a Typhoon-Induced Heavy Rainfall Event" Atmosphere 12, no. 7: 875. https://doi.org/10.3390/atmos12070875
APA StyleZhou, L., Xu, L., Lan, M., & Chen, J. (2021). An Improved Weighting Method of Time-Lag-Ensemble Averaging for Hourly Precipitation Forecasts and Its Application in a Typhoon-Induced Heavy Rainfall Event. Atmosphere, 12(7), 875. https://doi.org/10.3390/atmos12070875