Sensitivity Analysis of the Dust-Generation Algorithm in ADAM3 by Incorporating Surface-Wetness Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Asian Dust Aerosol Model Version 3 (ADAM3)
2.2. Study Area and Observation
2.3. Evaluation
3. Experimental Design
3.1. ADAM3_RAIN
3.2. ADAM3_SM1
3.3. ADAM3_SM2
4. Results and Discussion
4.1. Characteristics of the Frequency of Dust Occurrence Based on Past Precipitation
4.2. Evaluation for Spring Time
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.H.; Lin, Y.J. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci. China Earth Sci. 2014, 57, 36–46. [Google Scholar] [CrossRef]
- Wang, H.J.; Chen, H.P. Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmos. Chem. Phys. 2016, 16, 4205–4211. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ho, C.H.; Choi, Y.S. High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmos. Environ. 2011, 45, 7240–7247. [Google Scholar] [CrossRef]
- Oh, H.R.; Ho, C.H.; Kim, J.; Chen, D.; Lee, S.; Choi, Y.S.; Chang, L.S.; Song, C.K. Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmos. Environ. 2015, 109, 23–30. [Google Scholar] [CrossRef]
- Watanabe, M.; Yamasaki, A.; Burioka, N.; Kurai, J.; Yoneda, K.; Yoshida, A.; Igishi, T.; Fukuoka, Y.; Nakamoto, M.; Takeuchi, H. Correlation between Asian dust storms and worsening asthma in western Japan. Allergol. Int. 2011, 60, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Tam, W.W.; Wong, T.W.; Wong, A.H.; Hui, D.S. Effect of dust storm events on daily emergency admissions for respiratory diseases. Respirology 2012, 17, 143–148. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Honda, Y.; Lim, Y.H.; Yi, S. Effect of Asian dust storms on daily mortality in seven metropolitan cities of Korea. Atmos. Environ. 2013, 79, 510–517. [Google Scholar] [CrossRef]
- Shepherd, G.; Terradellas, E.; Baklanov, A.; Kang, U.; Sprigg, W.; Nickovic, S.; Boloorani, A.D.; Al-Dousari, A.; Basart, S.; Benedetti, A.; et al. Global Assessment of Sand and Dust Storms; United Nations Environment Programme: Nairobi, Kenya, 2016; p. 123. ISBN 978-92-807-3551-2. [Google Scholar]
- Park, S.U.; In, H.J. Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. J. Geophys. Res. Atmos. 2003, 108, 1–21. [Google Scholar] [CrossRef]
- Park, S.U.; Choe, A.; Lee, E.H.; Park, M.S.; Song, X. The Asian dust aerosol model 2 (ADAM2) with the use of normalized difference vegetation index (NDVI) obtained from the Spot4/vegetation data. Theor. Appl. Climatol. 2010, 101, 191–208. [Google Scholar] [CrossRef]
- Park, S.U.; Cho, J.H.; Park, M.S. A simulation of aerosols in Asia with the use of ADAM2 and CMAQ. Adv. Fluid Mech. Heat Mass Transf. 2012, 258–263. [Google Scholar]
- Ryoo, S.B.; Kim, J.; Cho, J.H. Performance of KMA-ADAM3 in identifying Asian dust days over Northern China. Atmosphere 2020, 11, 593. [Google Scholar] [CrossRef]
- Tanaka, T.Y.; Chiba, M. Global simulation of dust aerosol with a chemical transport model, MASINGAR. J. Meteorol. Soc. Jpn. 2005, 83, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.L.; Zhang, X.Y.; Zhao, T.L.; McKendry, I.G.; Jaffe, D.A.; Lu, N.M. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J. Geophys. Res. 2003, 108, 4262. [Google Scholar] [CrossRef]
- Gong, S.L.; Zhang, X.Y. CUACE/Dust—An integrated system of observation and modeling systems for operational dust forecasting in Asia. Atmos. Chem. Phys. 2008, 8, 2333–2340. [Google Scholar] [CrossRef] [Green Version]
- Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gassó, S.; Gill, T.; Laulainen, N.S.; Lu, F.; et al. Asian dust events of April 1998. J. Geophys. Res. 2001, 106, 18317–18330. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- Chung, Y.S.; Kim, T.K. On Long Range transport of air pollutants-sources and observations of yellow sand, TSP and sulphate in Korea. J. Korean Soc. Atmos. Environ. 1991, 7, 197–202. (In Korean) [Google Scholar]
- Chun, Y.; Boo, K.O.; Kim, J.; Park, S.U.; Lee, M. Synopsis, transport, and physical characteristics of Asian dust in Korea. J. Geophys. Res. Atmos. 2001, 106, 18461–18469. [Google Scholar] [CrossRef] [Green Version]
- Chun, Y.; Cho, K.S.; Kim, Y.H.; Lee, J.K. The features of Asian dust events originated in Keoeolchin sandy land. Asia Pac. J. Atmos. Sci. 2003, 39, 251–263. (In Korean) [Google Scholar]
- Kim, S.; Chun, Y.; Kim, S.B. The features of Asian dust events originated in Manchuria. Atmosphere 2010, 20, 273–286. (In Korean) [Google Scholar]
- Marticorena, B.; Bergametti, G.; Aumont, B.; Callot, Y.; N’Doumé, C.; Legrand, M. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res. 1997, 102, 4387–4404. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Tegen, I.; Fung, I. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res. 1994, 99, 22897–22914. [Google Scholar] [CrossRef]
- Hong, S.K.; Ryoo, S.-B.; Kim, J.; Lee, S.-S. Prediction of Asian dust days over Northern China using the KMA-ADAM2 Model. Weather. Forecast. 2019, 34, 1777–1787. [Google Scholar] [CrossRef]
- Lee, S.S.; Lim, Y.-K.; Cho, J.H.; Lee, H.C.; Ryoo, S.-B. Improved dust emission reduction factor in the ADAM2 model using real-time MODIS NDVI. Atmosphere 2019, 10, 702. [Google Scholar] [CrossRef]
- Davies, T.; Cullen, M.J.P.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Youngsin, C.; Lim, J.Y. The recent characteristics of Asian dust and haze events in Seoul, Korea. Meteorol. Atmos. Phys. 2004, 87, 143–152. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in Atmospheric Sciences; Academic Press: San Diego, CA, USA, 1995; p. 255. [Google Scholar]
- Owen, P.R. Saltation of uniform grains in air. J. Fluid Mech. 1964, 20, 225–242. [Google Scholar] [CrossRef]
- Shao, Y.; Lu, H. A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 2000, 105, 22437–22443. [Google Scholar] [CrossRef]
- Fécan, F.; Marticorena, B.; Bergametti, G. Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys. 1999, 17, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Zender, C.S.; Bian, H.; Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. 2003, 108, 4416. [Google Scholar] [CrossRef] [Green Version]
- Nachtergaele, F.; Van Velthuizen, H.; Verelst, L.; Wiberg, D. Harmonized World Soil Database Version 1.2; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
Case | CNTL | ADAM3_RAIN | ADAM3_SM1 | ADAM3_SM2 | |||
---|---|---|---|---|---|---|---|
RMSE | RMSE | SS | RMSE | SS | RMSE | SS | |
All | 90.22 | 86.43 | 4.61 | 79.53 | 12.51 | 80.36 | 11.40 |
Wet | 73.65 | 68.29 | 7.08 | 60.42 | 17.53 | 61.71 | 15.76 |
Dry | 64.19 | 62.50 | 2.65 | 58.90 | 8.15 | 59.91 | 6.63 |
Experiment Run | Surface-Wetness Effects Term | Description |
---|---|---|
CNTL | RH10 | Relative humidity is used for threshold conditions to represent the surface-wetness effects on dust generation |
ADAM3_RAIN | RH10, PRain | Precipitation over the 3-h period from 6 to 3 h prior to dust generation calculation (PRain) was added to the dust generation term in CNTL to represent the surface-wetness effects |
ADAM3_SM1 | The adjustment factor term related to soil moisture was added to the dust generation term in CNTL to represent the surface-wetness effects | |
ADAM3_SM2 |
Case | CNTL | ADAM3_RAIN | ADAM3_SM1 | ADAM3_SM2 |
---|---|---|---|---|
All | 10.16 | 3.79 | 1.32 | 5.47 |
Wet | 15.95 | 9.61 | 1.45 | 6.14 |
Dry | 2.77 | −0.56 | −4.98 | −0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.; Kang, M.; Kim, J. Sensitivity Analysis of the Dust-Generation Algorithm in ADAM3 by Incorporating Surface-Wetness Effects. Atmosphere 2021, 12, 872. https://doi.org/10.3390/atmos12070872
Lim Y, Kang M, Kim J. Sensitivity Analysis of the Dust-Generation Algorithm in ADAM3 by Incorporating Surface-Wetness Effects. Atmosphere. 2021; 12(7):872. https://doi.org/10.3390/atmos12070872
Chicago/Turabian StyleLim, Yunkyu, Misun Kang, and Jinwon Kim. 2021. "Sensitivity Analysis of the Dust-Generation Algorithm in ADAM3 by Incorporating Surface-Wetness Effects" Atmosphere 12, no. 7: 872. https://doi.org/10.3390/atmos12070872
APA StyleLim, Y., Kang, M., & Kim, J. (2021). Sensitivity Analysis of the Dust-Generation Algorithm in ADAM3 by Incorporating Surface-Wetness Effects. Atmosphere, 12(7), 872. https://doi.org/10.3390/atmos12070872