Input Parameters for Airborne Brake Wear Emission Simulations: A Comprehensive Review
Abstract
:1. Introduction
2. Subsystem Level
2.1. Subsystem Classification
2.1.1. Material Level
Pin-On-Disc Test
2.1.2. Component Level
Dynamometer Test
Inertia Dynamometer
- Full-Scale Dynamometer
- Reduced-Scale Dynamometer
CHASE Dynamometer
2.2. Simulation Methodologies
2.2.1. Finite Element Analysis (FEA)
2.2.2. Cellular Automaton (CA)
2.2.3. Computational Fluid Dynamics (CFD)
3. System Level
3.1. Emission Factor
3.2. Laboratory (Chassis Dynamometer)
3.3. On-Road Driving Test
3.4. Wheel Sampling
3.5. Simulation Methodologies
4. Environmental Level
4.1. Sampling Place
4.2. Non-Exhaust Emission Models
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Boulter, P.G.; Thorpe, A.J.; Harrison, R.M.; Allen, A.G. Road vehicle non-exhaust particulate matter: Final report on emission modelling. In Published Project Report PPR110; TRL: Berkshire, UK, 2006. [Google Scholar]
- Boulter, P.G. A Review of Emission Factors and Models for Road Vehicle Non-Exhaust Particulate Matter. In TRL Published Project Report PPR065; TRL: Berkshire, UK, 2006. [Google Scholar]
- Samoli, E.; Atkinson, R.; Analitis, A.; Fuller, G.W.; Green, D.; Mudway, I.; Anderson, H.R.; Kelly, F.J. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK. Occup. Environ. Med. 2016, 73, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Gasser, M.; Riediker, M.; Mueller, L.; Perrenoud, A.; Blank, F.; Gehr, P.; Rothen-Rutishauser, B. Toxic effects of brake wear particles on epithelial lung cells in vitro. Part. Fibre Toxicol. 2009, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, F.; Cassee, F.R.; van der Gon, H.D.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Volta, A.; Sforzini, S.; Camurati, C.; Teoldi, F.; Maiorana, S.; Croce, A.; Benfenati, E.; Perricone, G.; Lodi, M.; Viarengo, A. Ecotoxicological effects of atmospheric particulate produced by braking systems on aquatic and edaphic organisms. Environ. Int. 2020, 137, 105564. [Google Scholar] [CrossRef]
- Alvanchi, A.; Rahimi, M.; Mousavi, M.; Alikhani, H. Construction schedule, an influential factor on air pollution in urban infrastructure projects. J. Clean. Prod. 2020, 255, 120222. [Google Scholar] [CrossRef]
- Alvanchi, A.; Rahimi, M.; Alikhani, H. Air pollution concentration near sensitive urban locations: A missing factor to consider in the grade separation projects. J. Clean. Prod. 2019, 228, 824–832. [Google Scholar] [CrossRef]
- Amato, F. Non-Exhaust Emissions: An Urban Air Quality Problem for Public Health; Impact and Mitigation Measures. p. 342. Available online: https://www.elsevier.com/books/non-exhaust-emissions/amato/978-0-12-811770-5%0Ahttps://www.sciencedirect.com/book/9780128117705/non-exhaust-emissions (accessed on 3 July 2021).
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef]
- Straffelini, G.; Ciudin, R.; Ciotti, A.; Gialanella, S. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment. Environ. Pollut. 2015, 207, 211–219. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef]
- Perricone, G.; Alemani, M.; Metinöz, I.; Matějka, V.; Wahlström, J.; Olofsson, U. Towards the ranking of airborne particle emissions from car brakes—A system approach. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 781–797. [Google Scholar] [CrossRef]
- Sanders, P.G.; Dalka, T.M.; Xu, N.; Maricq, M.M.; Basch, R.H. Brake Dynamometer Measurement of Airborne Brake Wear Debris; SAE Technical Paper Series; AE International: Warrendale, PA, USA, 2002. [Google Scholar] [CrossRef]
- Nosko, O.; Olofsson, U. Effective density of airborne wear particles from car brake materials. J. Aerosol Sci. 2017, 107, 94–106. [Google Scholar] [CrossRef]
- Nosko, O.; Alemani, M.; Olofsson, U. Temperature effect on emission of airborne wear particles from car brakes. In Proceedings of the Europe’s Braking Conference and Exhibition, Dresden, Germany, 4–6 May 2015; pp. 4–6. [Google Scholar]
- Hussain, S.; Hamid, M.A.; Lazim, A.M.; Abu Bakar, A. Brake Wear Particle Size and Shape Analysis of Non-Asbestos Organic (NAO) and Semi Metallic Brake Pad. J. Teknol. 2014, 71, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Wahlström, J.; Olander, L.; Olofsson, U. Size, Shape, and Elemental Composition of Airborne Wear Particles from Disc Brake Materials. Tribol. Lett. 2009, 38, 15–24. [Google Scholar] [CrossRef]
- Cho, S.-H.; Tong, H.; McGee, J.K.; Baldauf, R.W.; Krantz, Q.T.; Gilmour, M.I. Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway. Environ. Health Perspect. 2009, 117, 1682–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, M.A.; Pinkerton, K.E.; Freeland, S.; Geller, M.; Ham, W.; Cliff, S.; Hopkins, L.E.; Kleeman, M.J.; Kodavanti, U.P.; Meharg, E.; et al. Airborne particles in the San Joaquin Valley may affect human health. Calif. Agric. 2008, 64, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, M.I.; McGee, J.; Duvall, R.M.; Dailey, L.; Daniels, M.; Boykin, E.; Cho, S.-H.; Doerfler, D.; Gordon, T.; Devlin, R.B. Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Obtained from Different Cities in the United States. Inhal. Toxicol. 2007, 19, 7–16. [Google Scholar] [CrossRef]
- Herner, J.D.; Aw, J.; Gao, O.; Chang, D.P.; Kleeman, M.J. Size and composition distribution of airborne particulate mat-ter in Northern California: I—Particulate mass, carbon, and water-soluble ions. J. Air Waste Manag. Assoc. 2005, 55, 30–51. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mulheron, M.; Fisher, B.; Harrison, R.M. New Directions: Airborne ultrafine particle dust from building activities—A source in need of quantification. Atmos. Environ. 2012, 56, 262–264. [Google Scholar] [CrossRef] [Green Version]
- Lü, S.; Zhang, R.; Yao, Z.; Yi, F.; Ren, J.; Wu, M.; Feng, M.; Wang, Q. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 2012, 24, 882–890. [Google Scholar] [CrossRef]
- Amatullah, H.; North, M.; Akhtar, U.S.; Rastogi, N.; Urch, B.; Silverman, F.S.; Chow, C.-W.; Evans, G.; Scott, J.A. Comparative cardiopulmonary effects of size-fractionated airborne particulate matter. Inhal. Toxicol. 2012, 24, 161–171. [Google Scholar] [CrossRef]
- Waheed, A.; Li, X.; Tan, M.; Bao, L.; Liu, J.; Zhang, Y.; Zhang, G.; Li, Y. Size Distribution and Sources of Trace Metals in Ultrafine/Fine/Coarse Airborne Particles in the Atmosphere of Shanghai. Aerosol Sci. Technol. 2011, 45, 163–171. [Google Scholar] [CrossRef]
- Niu, J.; Rasmussen, P.; Hassan, N.M.; Vincent, R. Concentration Distribution and Bioaccessibility of Trace Elements in Nano and Fine Urban Airborne Particulate Matter: Influence of Particle Size. Water Air Soil Pollut. 2010, 213, 211–225. [Google Scholar] [CrossRef]
- Chang, T.-J.; Hu, T.-S. Transport mechanisms of airborne particulate matters in partitioned indoor environment. Build. Environ. 2008, 43, 886–895. [Google Scholar] [CrossRef]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Meister, K.; Johansson, C.; Forsberg, B. Estimated Short-Term Effects of Coarse Particles on Daily Mortality in Stockholm, Sweden. Environ. Health Perspect. 2012, 120, 431–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, T.; Tang, M. Biological effects of airborne fine particulate matter (PM 2.5) exposure on pulmonary immune system. Environ. Toxicol. Pharmacol. 2018, 60, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Seo, Y.-C.; Kim, S.; Oh, J. Human health risks assessment for airborne PM10-bound metals in Seoul, Korea. Environ. Sci. Pollut. Res. 2019, 26, 24247–24261. [Google Scholar] [CrossRef]
- Ghanbarian, M.; Nicknam, M.H.; Mesdaghinia, A.; Yunesian, M.; Hassanvand, M.S.; Soleimanifar, N.; Rezaei, S.; Atafar, Z.; Ghanbarian, M.; Faraji, M.; et al. Investigation and Comparison of In Vitro Genotoxic Potency of PM10 Collected in Rural and Urban Sites at Tehran in Different Metrological Conditions and Different Seasons. Biol. Trace Elem. Res. 2018, 189, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, Y.; Song, X.; Lazar, L.; Li, Z.; Zhao, J. Impact of ambient PM2.5 on adverse birth outcome and potential molecular mechanism. Ecotoxicol. Environ. Saf. 2019, 169, 248–254. [Google Scholar] [CrossRef]
- Kim, O.-J.; Ha, E.-H.; Kim, B.-M.; Seo, J.-H.; Park, H.; Jung, W.-J.; Lee, B.-E.; Suh, Y.-J.; Kim, Y.-J.; Lee, J.-T.; et al. PM10 and Pregnancy Outcomes: A Hospital-Based Cohort Study of Pregnant Women in Seoul. J. Occup. Environ. Med. 2007, 49, 1394–1402. [Google Scholar] [CrossRef]
- Ren, Z.; Zhu, J.; Gao, Y.; Yin, Q.; Hu, M.; Dai, L.; Deng, C.; Yi, L.; Deng, K.; Wang, Y.; et al. Maternal exposure to ambient PM10 during pregnancy increases the risk of congenital heart defects: Evidence from machine learning models. Sci. Total Environ. 2018, 630, 1–10. [Google Scholar] [CrossRef]
- Giovannini, N.; Schwartz, L.; Cipriani, S.; Parazzini, F.; Baini, I.; Signorelli, V.; Cetin, I. Particulate matter (PM10) exposure, birth and fetal-placental weight and umbilical arterial pH: Results from a prospective study. J. Matern. Neonatal Med. 2018, 31, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Mathissen, M.; Grochowicz, J.; Schmidt, C.; Vogt, R.; Hagen, F.H.F.Z.; Grabiec, T.; Steven, H.; Grigoratos, T. A novel real-world braking cycle for studying brake wear particle emissions. Wear 2018, 414–415, 219–226. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Tago, H.; Kato, M.; Kimura, H.; Furuta, N. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 2007, 41, 4908–4919. [Google Scholar] [CrossRef]
- Hagino, H.; Oyama, M.; Sasaki, S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles. Atmos. Environ. 2016, 131, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Ketzel, M.; Omstedt, G.; Johansson, C.; Düring, I.; Pohjola, M.; Oettl, D.; Gidhagen, L.; Wåhlin, P.; Lohmeyer, A.; Haakana, M.; et al. Estimation and validation of PM2.5/PM10 exhaust and non-exhaust emission factors for practical street pollution modelling. Atmos. Environ. 2007, 41, 9370–9385. [Google Scholar] [CrossRef]
- Wei, L.; Choy, Y.; Cheung, C. A study of brake contact pairs under different friction conditions with respect to characteristics of brake pad surfaces. Tribol. Int. 2019, 138, 99–110. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Gon, H.A.D.; Gerlofs-Nijland, M.E.; Gehrig, R.; Gustafsson, M.; Janssen, N.; Harrison, R.M.; Hulskotte, J.; Johansson, C.; Jozwicka, M.; Keuken, M.; et al. The Policy Relevance of Wear Emissions from Road Transport, Now and in the Future—An International Workshop Report and Consensus Statement. J. Air Waste Manag. Assoc. 2012, 63, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Straffelini, G.; Gialanella, S. Airborne particulate matter from brake systems: An assessment of the relevant tribological formation mechanisms. Wear 2021, 478–479, 203883. [Google Scholar] [CrossRef]
- EEA. Europe’s Environment: The Second Assessment; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- European Commission (EC). Air Quality Standards. 2019. Available online: https://ec.europa.eu/environment/air/quality/standards.htm (accessed on 3 July 2021).
- EPA. NAAQS Table. United States Environmental Protection Agency. 2016. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 3 July 2021).
- Van der Gon, H.D.; Hulskotte, J.; Jozwicka, M.; Kranenburg, R.; Kuenen, J.; Visschedijk, A. European Emission Inventories and Projections for Road Transport Non-Exhaust Emissions. In Non-Exhaust Emissions; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 101–121. [Google Scholar]
- Asbach, C.; Todea, A.M.; Zessinger, M.; Kaminski, H. Generation of Fine and Ultrafine Particles during Braking and Possibilities for Their Measurement. In XXXVII Internationales μ-Symposium 2018 Bremsen-Fachtagung; Springer: Berlin/Heidelberg, Germany, 2018; pp. 143–164. [Google Scholar]
- Garg, B.D.; Cadle, S.H.; Mulawa, P.A.; Groblicki, P.J.; Laroo, C.; Parr, G.A. Brake Wear Particulate Matter Emissions. Environ. Sci. Technol. 2000, 34, 4463–4469. [Google Scholar] [CrossRef]
- Fiala, M.; Hwang, H.-M. Development of a Static Model to Identify Best Management Practices for Trace Metals from Non-Exhaust Traffic Emissions. Environ. Process. 2019, 6, 377–389. [Google Scholar] [CrossRef]
- Wahlström, J. Towards a cellular automaton to simulate friction, wear, and particle emission of disc brakes. Wear 2014, 313, 75–82. [Google Scholar] [CrossRef]
- Sinha, A.; Ischia, G.; Menapace, C.; Gialanella, S. Experimental Characterization Protocols for Wear Products from Disc Brake Materials. Atmosphere 2020, 11, 1102. [Google Scholar] [CrossRef]
- Perricone, G.; Matĕjka, V.; Alemani, M.; Wahlström, J.; Olofsson, U. A Test Stand Study on the Volatile Emissions of a Passenger Car Brake Assembly. Atmosphere 2019, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Wahlström, J.; Matejka, V.; Lyu, Y.; Söderberg, A. Contact Pressure and Sliding Velocity Maps of the Friction, Wear and Emission from a Low-Metallic/Cast-Iron Disc Brake Contact Pair. Tribol. Ind. 2017, 39, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Kukutschová, J.; Moravec, P.; Tomášek, V.; Matějka, V.; Smolík, J.; Schwarz, J.; Seidlerová, J.; Šafářová, K.; Filip, P. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environ. Pollut. 2011, 159, 998–1006. [Google Scholar] [CrossRef]
- Nosko, O.; Vanhanen, J.; Olofsson, U. Emission of 1.3–10 nm airborne particles from brake materials. Aerosol Sci. Technol. 2016, 51, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Alemani, M.; Wahlström, J.; Olofsson, U. On the influence of car brake system parameters on particulate matter emissions. Wear 2018, 396–397, 67–74. [Google Scholar] [CrossRef]
- Ma, J.; Olofsson, U.; Lyu, Y.; Wahlström, J.; Åström, A.H.; Tu, M. A Comparison of Airborne Particles Generated from Disk Brake Contacts: Induction Versus Frictional Heating. Tribol. Lett. 2020, 68, 38. [Google Scholar] [CrossRef] [Green Version]
- Paulus, A. Investigation of Brake Emissions of Different Brake Pad Materials with Regard to Particle Mass (PM) and Particle Number (PN). In XXXVIII Internationales μ-Symposium 2019 Bremsen-Fachtagung; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–94. [Google Scholar]
- Liati, A.; Schreiber, D.; Lugovyy, D.; Gramstat, S.; Eggenschwiler, P.D. Airborne particulate matter emissions from vehicle brakes in micro- and nano-scales: Morphology and chemistry by electron microscopy. Atmos. Environ. 2019, 212, 281–289. [Google Scholar] [CrossRef]
- Wahlström, J. A Study of Airborne Wear Particles from Automotive Disc Brakes. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2011. [Google Scholar]
- Wahlström, J. Towards a Simulation Methodology for Prediction of Airborne Wear Particles from Disc Brakes. Ph.D. Thesis, KTH, Stockholm, Sweden, 2009. [Google Scholar]
- Lawrence, S.; Sokhi, R.; Ravindra, K.; Mao, H.; Prain, H.D.; Bull, I. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 2013, 77, 548–557. [Google Scholar] [CrossRef]
- Kukutschová, J.; Roubíček, V.; Malachová, K.; Pavlíčková, Z.; Holuša, R.; Kubačková, J.; Mička, V.; MacCrimmon, D.; Filip, P. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear 2009, 267, 807–817. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M. Brake features enhancing the wear debris bimodal distribution. Wear 2009, 267, 1525–1533. [Google Scholar] [CrossRef]
- Hagen, F.H.F.Z.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. On-road vehicle measurements of brake wear particle emissions. Atmos. Environ. 2019, 217, 116943. [Google Scholar] [CrossRef]
- Kwak, J.-H.; Kim, H.; Lee, J.; Lee, S. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements. Sci. Total Environ. 2013, 458–460, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Wakeling, D.; Murrells, T.; Carslaw, D.; Norris, J.; Jones, L. The contribution of brake wear emissions to particulate mat-ter in ambient air. In FAT-Schriftenreihe; Forschungsvereinigung Automobiltechnik e.V.: Berlin, Germany, 2017; No. 301. [Google Scholar]
- Eriksson, M.; Lord, J.; Jacobson, S. Wear and contact conditions of brake pads: Dynamical in situ studies of pad on glass. Wear 2001, 249, 272–278. [Google Scholar] [CrossRef]
- Eriksson, M. Friction and Contact Phenomena of Disc Brakes Related to Squeal; Acta Universitatis Upsaliensis: Uppsala, Sweden, 2000. [Google Scholar]
- Ricciardi, V.; Augsburg, K.; Gramstat, S.; Schreiber, V.; Ivanov, V. Survey on Modelling and Techniques for Friction Estimation in Automotive Brakes. Appl. Sci. 2017, 7, 873. [Google Scholar] [CrossRef]
- Ostermeyer, G. On the dynamics of the friction coefficient. Wear 2003, 254, 852–858. [Google Scholar] [CrossRef]
- Philippe, F.; Xiang, M.; Bressot, C.; Chen, Y.; Guingand, F.; Charles, P.; Loigerot, J.; Morgeneyer, M. Relevance of pin-on-disc and inertia dynamometer bench experiments for braking emission studies. J. Phys. Conf. Ser. 2019, 1323, 012025. [Google Scholar] [CrossRef] [Green Version]
- Agudelo, C.; Vedula, R.T.; Odom, T. Estimation of Transport Efficiency for Brake Emissions Using Inertia Dynamometer Testing; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Alemani, M.; Wahlstrom, J.; Matejka, V.; Metinöz, I.; Soderberg, A.; Perricone, G.; Olofsson, U. Scaling effects of measuring disc brake airborne particulate matter emissions—A comparison of a pin-on-disc tribometer and an inertia dynamometer bench under dragging conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 1538–1547. [Google Scholar] [CrossRef]
- Joo, B.S.; Chang, Y.H.; Seo, H.J.; Jang, H. Effects of binder resin on tribological properties and particle emission of brake linings. Wear 2019, 434–435. [Google Scholar] [CrossRef]
- Lyu, Y.; Leonardi, M.; Wahlström, J.; Gialanella, S.; Olofsson, U. Friction, wear and airborne particle emission from Cu-free brake materials. Tribol. Int. 2020, 141, 105959. [Google Scholar] [CrossRef]
- Riva, G.; Valota, G.; Perricone, G.; Wahlström, J. An FEA approach to simulate disc brake wear and airborne particle emissions. Tribol. Int. 2019, 138, 90–98. [Google Scholar] [CrossRef]
- Wei, L.; Choy, Y.; Cheung, C.; Jin, D. Tribology performance, airborne particle emissions and brake squeal noise of copper-free friction materials. Wear 2020, 448–449, 203215. [Google Scholar] [CrossRef]
- Leonardi, M.; Alemani, M.; Straffelini, G.; Gialanella, S. A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite. Wear 2020, 442–443, 203157. [Google Scholar] [CrossRef]
- Yanar, H.; Purcek, G.; Ayar, H.H. Effect of steel fiber addition on the mechanical and tribological behavior of the composite brake pad materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 724, 012018. [Google Scholar] [CrossRef]
- Raghavendra, C.R.; Basavarajappa, S.; Sogalad, I. Analysis of temperature field in dry sliding wear test on pin-on-disc. Heat Mass Transf. 2018, 55, 1545–1552. [Google Scholar] [CrossRef]
- Mohammadnejad, A.; Bahrami, A.; Goli, M.; Nia, H.D.; Taheri, P. Wear Induced Failure of Automotive Disc Brakes—A Case Study. Materials 2019, 12, 4214. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Wahlström, J.; Tu, M.; Olofsson, U. A Friction, Wear and Emission Tribometer Study of Non-Asbestos Organic Pins Sliding Against AlSiC MMC Discs. Tribol. Ind. 2018, 40, 274–282. [Google Scholar] [CrossRef]
- Wahlström, J.; Söderberg, A.; Olander, L.; Olofsson, U.; Jansson, A. Airborne wear particles from passenger car disc brakes: A comparison of measurements from field tests, a disc brake assembly test stand, and a pin-on-disc machine. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 224, 179–188. [Google Scholar] [CrossRef]
- Federici, M.; Alemani, M.; Menapace, C.; Gialanella, S.; Perricone, G.; Straffelini, G. A critical comparison of dynamometer data with pin-on-disc data for the same two friction material pairs—A case study. Wear 2019, 424–425, 40–47. [Google Scholar] [CrossRef]
- Straffelini, G. Friction and Wear: Materials with Internal Structure; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Wahlström, J.; Söderberg, A.; Olander, L.; Jansson, A.; Olofsson, U. A pin-on-disc simulation of airborne wear particles from disc brakes. Wear 2010, 268, 763–769. [Google Scholar] [CrossRef]
- ANogueira, P.G.; Carlevaris, D.; Menapace, C.; Straffelini, G. Tribological and Emission Behavior of Novel Fric-tion Materials. Atmosphere 2020, 11, 1050. [Google Scholar]
- Verma, P.C.; Menapace, L.; Bonfanti, A.; Ciudin, R.; Gialanella, S.; Straffelini, G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear 2015, 322–323, 251–258. [Google Scholar] [CrossRef]
- Matějka, V.; Metinöz, I.; Wahlström, J.; Alemani, M.; Perricone, G. On the running-in of brake pads and discs for dyno bench tests. Tribol. Int. 2017, 115, 424–431. [Google Scholar] [CrossRef]
- Plachá, D.; Vaculík, M.; Mikeska, M.; Dutko, O.; Peikertová, P.; Kukutschová, J.; Kutláková, K.M.; Růžičková, J.; Tomášek, V.; Filip, P. Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear 2017, 376–377, 705–716. [Google Scholar] [CrossRef]
- Barosova, H.; Chortarea, S.; Peikertova, P.; Clift, M.J.D.; Petri-Fink, A.; Kukutschova, J.; Rothen-Rutishauser, B. Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation. Arch. Toxicol. 2018, 92, 2339–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, G.; Perricone, G.; Wahlström, J. A Multi-Scale Simulation Approach to Investigate Local Contact Temperatures for Commercial Cu-Full and Cu-Free Brake Pads. Lubricants 2019, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Gramstat, S.; Lugovyy, D.; Waninger, R.; Schroeder, M. Investigations of the Measurement Layout for Brake Particle Emissions; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Menapace, C.; Mancini, A.; Federici, M.; Straffelini, G.; Gialanella, S. Characterization of airborne wear debris produced by brake pads pressed against HVOF-coated discs. Friction 2019, 8, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Wahlström, J.; Söderberg, A.; Olander, L.; Olofsson, U. A disc brake test stand for measurement of airborne wear particles. Lubr. Sci. 2009, 21, 241–252. [Google Scholar] [CrossRef]
- Hill, F.W.; Anderson, D.L. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Kukutschová, J.; Filip, P. Review of Brake Wear Emissions. In Non-Exhaust Emissions; Elsevier Inc.: Amsetrdam, The Netherlands, 2018; pp. 123–146. [Google Scholar] [CrossRef]
- Alemani, M.; Nosko, O.; Metinoz, I.; Olofsson, U. A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs. SAE Int. J. Mater. Manuf. 2015, 9, 147–157. [Google Scholar] [CrossRef]
- Nosko, O.; Olofsson, U. Quantification of ultrafine airborne particulate matter generated by the wear of car brake materials. Wear 2017, 374–375, 92–96. [Google Scholar] [CrossRef]
- Tsang, P.; Jacko, M.; Rhee, S. Comparison of Chase and inertial brake Dynamometer testing of automotive friction materials. Wear 1985, 103, 217–232. [Google Scholar] [CrossRef]
- Jacko, M.G.; Ducharme, R.T. Simulation and Characterization of Used Brake Friction Materials and Rotors; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1973. [Google Scholar] [CrossRef]
- Kumar, M.; Bijwe, J. NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer. Wear 2010, 269, 826–837. [Google Scholar] [CrossRef]
- Hagen, F.H.F.Z.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions. Environ. Sci. Technol. 2019, 53, 5143–5150. [Google Scholar] [CrossRef]
- Mamakos, A.; Arndt, M.; Hesse, D.; Augsburg, K. Physical Characterization of Brake-Wear Particles in a PM10 Dilution Tunnel. Atmosphere 2019, 10, 639. [Google Scholar] [CrossRef] [Green Version]
- Matějka, V.; Perricone, G.; Vlček, J.; Olofsson, U.; Wahlström, J. Airborne Wear Particle Emissions Produced during the Dyno Bench Tests with a Slag Containing Semi-Metallic Brake Pads. Atmosphere 2020, 11, 1220. [Google Scholar] [CrossRef]
- Sanders, P.; Dalka, T.; Basch, R. A reduced-scale brake dynamometer for friction characterization. Tribol. Int. 2001, 34, 609–615. [Google Scholar] [CrossRef]
- Anderson, A.E.; Gratch, S.; Hayes, H.P. A New Laboratory Friction and Wear Test for the Characterization of Brake Linings; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1967. [Google Scholar]
- Kermc, M.; Kalin, M.; Vizintin, J.; Stadler, Z. A reduced-scale testing machine for tribological evaluation of brake materials. Life Cycle Tribol. 2005, 48, 799–806. [Google Scholar] [CrossRef]
- Alnaqi, A.; Barton, D.C.; Brooks, P.C. Reduced scale thermal characterization of automotive disc brake. Appl. Therm. Eng. 2015, 75, 658–668. [Google Scholar] [CrossRef]
- Kumar, M.; Bijwe, J. Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient—Temperature sensitivity in brake materials. Wear 2010, 269, 838–846. [Google Scholar] [CrossRef]
- Desplanques, Y.; Roussette, O.; Degallaix, G.; Copin, R.; Berthier, Y. Analysis of tribological behaviour of pad–disc contact in railway braking. Wear 2007, 262, 582–591. [Google Scholar] [CrossRef]
- Liu, T.; Rhee, S.; Lawson, K. A study of wear rates and transfer films of friction materials. Wear 1980, 60, 1–12. [Google Scholar] [CrossRef]
- Burkman, A.J.; Hishley, F.H. Laboratory Evaluation of Brake Lining Materials; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1967. [Google Scholar] [CrossRef]
- Söderberg, A.; Andersson, S. Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software. Wear 2009, 267, 2243–2251. [Google Scholar] [CrossRef]
- Esgandari, M.; Olatunbosun, O. Implicit–explicit co-simulation of brake noise. Finite Elem. Anal. Des. 2015, 99, 16–23. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Soderberg, A.; Sellgren, U.; Andersson, S. Using Finite Element Analysis to Predict the Brake Pressure Needed for Effective Rotor Cleaning in Disc Brakes; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2008. [Google Scholar]
- Valota, G.; de Luca, S.; Söderberg, A. “Using a finite element analysis to simulate the wear in disc brakes during a dyno bench test cycle. In Proceedings of the Eurobrake, Dresden, Germany, 2–4 May 2017. [Google Scholar]
- AbuBakar, A.R.; Ouyang, H. Wear prediction of friction material and brake squeal using the finite element method. Wear 2008, 264, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Eltoukhy, C.H.M.; Asfour, S.; Almakky, M. Thermoelastic Instability in Disk Brakes: Simulation of the Heat Generation Problem. In Proceedings of the COMSOL Users Conference 2006, Boston, MA, USA, 22–24 October 2006. [Google Scholar]
- Cho, C.; Ahn, S. Transient thermoelastic analysis of disk brake using the fast fourier transform and finite element method. J. Therm. Stress. 2002, 25, 215–243. [Google Scholar] [CrossRef]
- Choi, J.-H.; Lee, I. Finite element analysis of transient thermoelastic behaviors in disk brakes. Wear 2004, 257, 47–58. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, L.; Yu, Z. Theoretical modeling and FEA of thermo-mechanical coupling dynamics of ventilated disc brake. Tongji Daxue Xuebao J. Tongji Univ. 2010, 38, 890–897. [Google Scholar] [CrossRef]
- Zhang, L.; Diao, K. Friction modeling for thermo-mechanical coupling characterization of disc brake. Tongji Daxue Xuebao J. Tongji Univ. 2011, 39, 1680–1686. [Google Scholar] [CrossRef]
- Adamowicz, A. Finite element analysis of the 3-D thermal stress state in a brake disk. J. Theor. Appl. Mech. 2016, 54, 205–218. [Google Scholar] [CrossRef]
- Yevtushenko, A.; Grzes, P. Axisymmetric FEA of temperature in a pad/disc brake system at temperature-dependent coefficients of friction and wear. Int. Commun. Heat Mass Transf. 2012, 39, 1045–1053. [Google Scholar] [CrossRef]
- Li, L.; Song, J.; Qi, X. Study on Vehicle Braking Transient Thermal Field Based on Fast Finite Element Method Simulation; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Sarkar, S.; Rathod, P.P.; Modi, A.J. Research Paper on Modeling and Simulation of Disc Brake to Analyse Temperature Distribution using FEA. Int. J. Sci. Res. Dev. 2014, 2, 491–494. [Google Scholar]
- Dhakar, P.S. Thermal Analysis of Disc brake Using ANSYS. Int. J. Tech. Innov. Mod. Eng. Sci. 2018, 4, 8–17. [Google Scholar] [CrossRef]
- Bortoleto, E.; Rovani, A.; Seriacopi, V.; Profito, F.; Zachariadis, D.; Machado, I.; Sinatora, A.; Souza, R. Experimental and numerical analysis of dry contact in the pin on disc test. Wear 2013, 301, 19–26. [Google Scholar] [CrossRef]
- Wahlström, J.; Söderberg, A.; Olofsson, U. Simulation of Airborne Wear Particles from Disc Brakes; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2009. [Google Scholar]
- Han, M.J.; Lee, C.H.; Park, T.W.; Son, S.M. Coupled thermo-mechanical analysis and shape optimization for reducing uneven wear of brake pads. Int. J. Automot. Technol. 2017, 18, 1027–1035. [Google Scholar] [CrossRef]
- Perricone, G.; Matějka, V.; Alemani, M.; Valota, G.; Bonfanti, A.; Ciotti, A.; Olofsson, U.; Söderberg, A.; Wahlström, J.; Nosko, O.; et al. A concept for reducing PM10 emissions for car brakes by 50%. Wear 2018, 396–397, 135–145. [Google Scholar] [CrossRef]
- Goo, B.-C. A Study on the Contact Pressure and Thermo-Elastic Behavior of a Brake Disc-Pad by Infrared Images and Finite Element Analysis. Appl. Sci. 2018, 8, 1639. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.A.; Schmidt, T.; Grabherr, O.; Bartel, D. Transient wear simulation based on three-dimensional finite element analysis for a dry running tilted shaft-bushing bearing. Wear 2018, 408–409, 171–179. [Google Scholar] [CrossRef]
- Shahid, E.; Wang, X.; Fan, Z.; Gui, L. Numerical Simulation of the Stress, Temperature & Wear Behaviours of the Drum Brake. IOP Conf. Ser. Mater. Sci. Eng. 2018, 398, 012018. [Google Scholar]
- Hatam, A.; Khalkhali, A. Simulation and sensitivity analysis of wear on the automotive brake pad. Simul. Model. Pract. Theory 2018, 84, 106–123. [Google Scholar] [CrossRef]
- Zhang, S.; Hao, Q.; Liu, Y.; Jin, L.; Ma, F.; Sha, Z.; Yang, D. Simulation Study on Friction and Wear Law of Brake Pad in High-Power Disc Brake. Math. Probl. Eng. 2019, 2019, 6250694. [Google Scholar] [CrossRef] [Green Version]
- Österle, W.; Kloß, H.; Urban, I.; Dmitriev, A. Towards a better understanding of brake friction materials. Wear 2007, 263, 1189–1201. [Google Scholar] [CrossRef]
- Österle, W.; Dmitriev, A.; Kloß, H. Possible impacts of third body nanostructure on friction performance during dry sliding determined by computer simulation based on the method of movable cellular automata. Tribol. Int. 2012, 48, 128–136. [Google Scholar] [CrossRef]
- Ostermeyer, G.P.; Müller, M. New insights into the tribology of brake systems. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 1167–1200. [Google Scholar] [CrossRef]
- Wahlström, J.; Söderberg, A.; Olofsson, U. A Cellular Automaton Approach to Numerically Simulate the Contact Situation in Disc Brakes. Tribol. Lett. 2011, 42, 253–262. [Google Scholar] [CrossRef]
- Mueller, M.; Ostermeyer, G. Cellular automata method for macroscopic surface and friction dynamics in brake systems. Tribol. Int. 2007, 40, 942–952. [Google Scholar] [CrossRef]
- Müller, M.; Ostermeyer, G. A Cellular Automaton model to describe the three-dimensional friction and wear mechanism of brake systems. Wear 2007, 263, 1175–1188. [Google Scholar] [CrossRef]
- Wahlström, J. A comparison of measured and simulated friction, wear, and particle emission of disc brakes. Tribol. Int. 2015, 92, 503–511. [Google Scholar] [CrossRef]
- Wahlström, J. A Factorial Design to Numerically Study the Effects of Brake Pad Properties on Friction and Wear Emissions. Adv. Tribol. 2016, 2016, 8181260. [Google Scholar] [CrossRef] [Green Version]
- Munisamy, K.M.; Shafik, R. Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD). IOP Conf. Ser. Earth Environ. Sci. 2013, 16, 12109. [Google Scholar] [CrossRef] [Green Version]
- Vdovin, A.; Gustafsson, M.; Sebben, S. A coupled approach for vehicle brake cooling performance simulations. Int. J. Therm. Sci. 2018, 132, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Schütz, T.; Kuthada, T.; Wiedemann, J.; Wickem, G. Brake Disk Cooling CFD-Simulation and Validation. In Proceedings of the FISITA 2008 World Automotive Congress 2008, Munich, Germany, 14–19 September 2008. [Google Scholar]
- Hunt, W.; Price, A.; Jelic, S.; Staelens, V.; Ul-Hasnain, M.S. A Coupled Simulation Approach to Race Track Brake Cooling for a GT3 Race Car. In Progress in Vehicle Aerodynamics and Thermal Management; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 3–17. [Google Scholar]
- Krüsemann, R.; Schmidt, G. Analysis and Optimization of Disk Brake Cooling via Computational Fluid Dynamics; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1995. [Google Scholar]
- Belhocien, A.; Omar, W.Z.W. CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor. J. Multiscale Model. 2018, 9. [Google Scholar] [CrossRef]
- Vdovin, A.; Le Gigan, G. Aerodynamic and Thermal Modelling of Disc Brakes—Challenges and Limitations. Energies 2020, 13, 203. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.M.; Mallikarjuna, J.M.; Ganesan, V. Flow and Heat Transfer Analysis through a Brake Disc: A CFD Approach. Heat Transf. 2006, 1, 481–485. [Google Scholar]
- Tang, J.; Qi, H.S. FEM and CFD Co-simulation Study of a Ventilated Disc Brake Heat Transfer. In Proceedings of the EuroBrake 2013 Conference Proceedings, Dresden, Germany, 17–19 June 2013. [Google Scholar]
- Puglisevich, L.S.; Gaylard, A.; Osborne, M.; Jilesen, J.; Gagliardi, A. Application of CFD to Predict Brake Disc Contamination in Wet Conditions. SAE Int. J. Passeng. Cars Mech. Syst. 2016, 9, 800–807. [Google Scholar] [CrossRef]
- Augsburg, K.; Gramstat, S.; Horn, R.; Sachse, H. Measures Development for Brake Dust Emissions with Computational Fluid Dynamics and Particle Imaging Velocimetry; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Hesse, D.; Augsburg, K. Real Driving Emissions Measurement of Brake Dust Particles; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Vertenten, D.P. Method and Apparatus for Determining a Brake Overheating Condition. U.S. Patent No 7,009,508, 7 March 2006. [Google Scholar]
- Beji, A.; Deboudt, K.; Khardi, S.; Muresan, B.; Flament, P.; Fourmentin, M.; Lumière, L. Non-exhaust particle emissions under various driving conditions: Implications for sustainable mobility. Transp. Res. Part D Transp. Environ. 2020, 81, 102290. [Google Scholar] [CrossRef]
- Franco, V.; Kousoulidou, M.; Muntean, M.; Ntziachristos, L.; Hausberger, S.; Dilara, P. Road vehicle emission factors development: A review. Atmos. Environ. 2013, 70, 84–97. [Google Scholar] [CrossRef]
- Cheremisinoff, N.P. Pollution Management and Responsible Care. In Waste; Academic Press: Cambridge, MA, USA, 2011; pp. 487–502. [Google Scholar]
- Grigoratos, T.; Giorgio, M. Non-Exhaust Traffic Related Emissions. Brake and Tyre Wear PM; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Timmers, V.R.; Achten, P.A. Non-exhaust PM emissions from electric vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prevot, A.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Hesse, D.; Hamatschek, C.; Augsburg, K.; Weigelt, T.; Prahst, A.; Gramstat, S. Testing of Alternative Disc Brakes and Friction Materials Regarding Brake Wear Particle Emissions and Temperature Behavior. Atmosphere 2021, 12, 436. [Google Scholar] [CrossRef]
- Lawrence, S.; Sokhi, R.; Ravindra, K. Quantification of vehicle fleet PM 10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques. Environ. Pollut. 2016, 210, 419–428. [Google Scholar] [CrossRef]
- Hulskotte, J.; Roskam, G.; van der Gon, H.D. Elemental composition of current automotive braking materials and derived air emission factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Kato, M.; Kozawa, K.; Furuta, N. Emission Factor for Antimony in Brake Abrasion Dusts as One of the Major Atmospheric Antimony Sources. Environ. Sci. Technol. 2008, 42, 2937–2942. [Google Scholar] [CrossRef]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Sci. Total. Environ. 2021, 766, 144440. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Park, B.; Kim, S.; Rhee, S.; Kim, Y.; Kim, J. A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, S.J.; Park, B.K.; Rhee, S.K. A Comprehensive Study of Humidity Effects on Friction, Pad Wear, Disc Wear, DTV, Brake Noise and Physical Properties of Pads; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Chasapidis, L.; Grigoratos, T.; Zygogianni, A.; Tsakis, A.; Konstandopoulos, A.G. Study of Brake Wear Particle Emissions of a Minivan on a Chassis Dynamometer. Emiss. Control. Sci. Technol. 2018, 4, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Mathissen, M.; Grigoratos, T.; Lahde, T.; Vogt, R. Brake Wear Particle Emissions of a Passenger Car Measured on a Chassis Dynamometer. Atmosphere 2019, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.; Carter, P.; Bradow, R.L. Simulation of Automobile Brake Wear Dynamics and Estimation of Emissions; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1983. [Google Scholar] [CrossRef]
- Kwak, J.; Lee, S.; Lee, S. On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions. Atmos. Environ. 2014, 97, 195–205. [Google Scholar] [CrossRef]
- Mathissen, M.; Scheer, V.; Kirchner, U.; Vogt, R.; Benter, T. Non-exhaust PM emission measurements of a light duty vehicle with a mobile trailer. Atmos. Environ. 2012, 59, 232–242. [Google Scholar] [CrossRef]
- Fitz, D.R.; Bufalino, C. Measurement of PM10 emission factors from paved roads using on-board particle sensors. In Proceedings of the US EPA 11th International Emission Inventory Conference, Atlanta, GA, USA, 15–18 April 2002; Volume 15, p. 2002. [Google Scholar]
- Wahlström, J.; Olofsson, U. A field study of airborne particle emissions from automotive disc brakes. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 229, 747–757. [Google Scholar] [CrossRef]
- Perricone, G.; Alemani, M.; Wahlström, J.; Olofsson, U. A proposed driving cycle for brake emissions investigation for test stand. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 234, 122–135. [Google Scholar] [CrossRef]
- Puisney, C.; Oikonomou, E.K.; Nowak, S.; Chevillot-Biraud, A.; Casale, S.; Baeza-Squiban, A.; Berret, J.-F. Brake wear (nano)particle characterization and toxicity on airway epithelial cells in vitro. Environ. Sci. Nano 2018, 5, 1036–1044. [Google Scholar] [CrossRef] [Green Version]
- Varrica, D.; Bardelli, F.; Dongarrà, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Kenig, S.; Ben-David, A.; Omer, M.; Sadeh, A. Control of properties in injection molding by neural networks. Eng. Appl. Artif. Intell. 2001, 14, 819–823. [Google Scholar] [CrossRef]
- Abdelbary, A.; Abouelwafa, M.; El Fahham, I.; Hamdy, A. Modeling the wear of Polyamide 66 using artificial neural network. Mater. Des. 2012, 41, 460–469. [Google Scholar] [CrossRef]
- Sosimi, A.A.; Gbenebor, O.P.; Oyerinde, O.; Bakare, O.O.; Adeosun, S.O.; Olaleye, S.A. Analysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systems. Neural Comput. Appl. 2020, 32, 13453–13464. [Google Scholar] [CrossRef]
- Nasir, T.; Yousif, B.F.; McWilliam, S.; Salih, N.D.; Hui, L.T. An artificial neural network for prediction of the friction coefficient of multi-layer polymeric composites in three different orientations. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 224, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Gyurova, L.A.; Miniño-Justel, P.; Schlarb, A.K. Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks. Wear 2010, 268, 708–714. [Google Scholar] [CrossRef]
- Nagaraj, A.; Shivalingappa, D.; Koti, H. Channankaiah, Modelling and predicting adhesive wear behaviour of Alu-minium-Silicon Alloy using neural network. Int. J. Recent Sci. Res. 2012, 3, 378–381. [Google Scholar]
- Ramesh, C.; Kumar, R. Mathematical and neural network models for prediction of wear of mild steel coated with in-conel 718—A comparative study. Int. J. Sci. Res. Publ. 2012, 2, 1–8. [Google Scholar]
- Hassan, A.K.F.; Mohammed, S. Artificial Neural Network Model for Estimation of Wear and Temperature in Pin-disc Contact. Univers. J. Mech. Eng. 2016, 4, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y.; Liu, B.W.; Liu, Y.; Huang, B.Y. Prediction model for friction coefficient of resin-based friction materials based on neural network. Mater. Sci. Eng. Powder Metall. 2006, 11, 272–276. [Google Scholar]
- Jones, S.P.; Jansen, R.; Fusaro, R.L. Preliminary Investigation of Neural Network Techniques to Predict Tribological Properties. Tribol. Trans. 1997, 40, 312–320. [Google Scholar] [CrossRef]
- Genel, K.; Kurnaz, S.; Durman, M. Modeling of tribological properties of alumina fiber reinforced zinc–aluminum composites using artificial neural network. Mater. Sci. Eng. A 2003, 363, 203–210. [Google Scholar] [CrossRef]
- Gailis, M.; Berjoza, D. On prediction of motor vehicle brake pad wearout. In Engineering for Rural Development; LLU: Jelgava, Latvia, 2012. [Google Scholar]
- Durmuş, H.; Özkaya, E.; Meriç, C. The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminium alloy. Mater. Des. 2006, 27, 156–159. [Google Scholar] [CrossRef]
- Song, R.-G.; Zhang, Q.-Z.; Tseng, M.-K.; Zhang, B.-J. The application of artificial neural networks to the investigation of aging dynamics in 7175 aluminium alloys. Mater. Sci. Eng. C 1995, 3, 39–41. [Google Scholar] [CrossRef]
- Atik, E.; Meriç, C.; Karlik, B. Determination Of Yield Strenght of 2014 Aluminium Alloy under Aging Conditions by Means of Artifical Neural Networks Method. Math. Comput. Appl. 1996, 1, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Hariprasad, T.; Shivalingappa, D.; Nagaraj, A.; Manivasagam, G. The use of artificial neural network for the prediction of wear loss of aluminium-magnesium alloys. Int. J. Comput. Aided Eng. Technol. 2015, 7, 72. [Google Scholar] [CrossRef]
- Aleksendric, D. Neural network prediction of brake friction materials wear. Wear 2010, 268, 117–125. [Google Scholar] [CrossRef]
- Yin, Y.; Bao, J.; Yang, L. Wear performance and its online monitoring of the semimetal brake lining for automobiles. Ind. Lubr. Tribol. 2014, 66, 100–105. [Google Scholar] [CrossRef]
- Mutlu, I. Artificial Neural Networks Modelling of Non-Asbestos Brake Lining Performance Boric Acid in Brake Pad. Inf. Technol. J. 2009, 8, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Wu, Q.S. Artificial Neural Network for Predicting Wear Properties of Brake Lining Materials. Adv. Mater. Res. 2011, 328–330, 237–240. [Google Scholar] [CrossRef]
- Bao, J.; Tong, M.; Zhu, Z.; Yin, Y. Intelligent tribological forecasting model and system for disc brake. In Proceedings of the 2012 24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, 23–25 May 2012. [Google Scholar]
- Prajapati, D.K.; Tiwari, M. Use of Artificial Neural Network (ANN) to Determining Surface Parameters, Friction and Wear during Pin-on-Disc Tribotesting. Key Eng. Mater. 2017, 739, 87–95. [Google Scholar] [CrossRef]
- Ikpambese, K.; Lawrence, E. Comparative Analysis of Multiple Linear Regression and Artificial Neural Network for Predicting Friction and Wear of Automotive Brake Pads Produced from Palm Kernel Shell. Tribol. Ind. 2018, 40, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Harlapur, C.C.; Kadiyala, P.; Ramakrishna, S. Brake Pad Wear Detection Using Machine Learning. Int. J. Adv. Res. Ideas Innov. Technol. 2019, 5, 498–501. [Google Scholar]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Khlystov, A.; Ho, K.F.; Campbell, D.; Chow, J.C.; Kohl, S.D.; Watson, J.G.; Lee, S.C.; Chen, L.W.; Lu, M.; et al. Real-World Vehicle Emissions Characterization for the Shing Mun Tunnel in Hong Kong and Fort McHenry Tunnel in the United States. Res. Rep. Health Eff. Inst. 2019, 2019, PMC7282032. [Google Scholar]
- Abu-Allaban, M.; Coulomb, W.; Gertler, A.W.; Gillies, J.; Pierson, W.R.; Rogers, C.F.; Sagebiel, J.C.; Tarnay, L. Exhaust Particle Size Distribution Measurements at the Tuscarora Mountain Tunnel. Aerosol Sci. Technol. 2002, 36, 771–789. [Google Scholar] [CrossRef]
- Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prevot, A.; Nava, S.; Lucarelli, F.; Bukowiecki, N.; Alastuey, A.; Reche, C.; et al. Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmos. Chem. Phys. Discuss. 2011, 11, 2917–2931. [Google Scholar] [CrossRef] [Green Version]
- Minguillón, M.C.; Cirach, M.; Hoek, G.; Brunekreef, B.; Tsai, M.; de Hoogh, K.; Jedynska, A.; Kooter, I.M.; Nieuwenhuijsen, M.; Querol, X. Spatial variability of trace elements and sources for improved exposure assessment in Barcelona. Atmos. Environ. 2014, 89, 268–281. [Google Scholar] [CrossRef]
- Omstedt, G.; Andersson, S.; Gidhagen, L.; Robertson, L. Evaluation of new model tools for meeting the targets of the EU Air Quality Directive: A case study on the studded tyre use in Sweden. Int. J. Environ. Pollut. 2011, 47, 79. [Google Scholar] [CrossRef]
- Denby, B.; Sundvor, I.; Johansson, C.; Pirjola, L.; Ketzel, M.; Norman, M.; Kupiainen, K.; Gustafsson, M.; Blomqvist, G.; Omstedt, G. A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1: Road dust loading and suspension modelling. Atmos. Environ. 2013, 77, 283–300. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Jonsson, P.; Swietlicki, E. Factors influencing PM10 emissions from road pavement wear. Atmos. Environ. 2009, 43, 4699–4702. [Google Scholar] [CrossRef]
- Schauer, J.J.; Lough, G.C.; Shafer, M.M.; Christensen, W.F.; Arndt, M.F.; Deminter, J.T.; Park, J.-S. Characterization of metals emitted from motor vehicles. Res. Rep. Health Eff. Inst. 2006, 133, 1–76, discussion 77–88. [Google Scholar]
- Hjortenkrans, D.S.T.; Bergbäck, B.G.; Häggerud, A.V. Metal Emissions from Brake Linings and Tires: Case Studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 2007, 41, 5224–5230. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Occurrence and effects of tire wear particles in the environment—A critical review and an initial risk assessment. Environ. Pollut. 2009, 157, 1–11. [Google Scholar] [CrossRef]
- Hussein, T.; Johansson, C.; Karlsson, H.; Hansson, H.-C. Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden. Atmos. Environ. 2008, 42, 688–702. [Google Scholar] [CrossRef]
- Kuhns, H.; Etyemezian, V.; Landwehr, D.; MacDougall, C.; Pitchford, M.; Green, M. Testing Re-entrained Aerosol Kinetic Emissions from Roads: A new approach to infer silt loading on roadways. Atmos. Environ. 2001, 35, 2815–2825. [Google Scholar] [CrossRef]
- Etyemezian, V. Vehicle-based road dust emission measurement: I—Methods and calibration. Atmos. Environ. 2003, 37, 4559–4571. [Google Scholar] [CrossRef]
- Pirjola, L.; Kupiainen, K.; Perhoniemi, P.; Tervahattu, H.; Vesala, H. Non-exhaust emission measurement system of the mobile laboratory SNIFFER. Atmos. Environ. 2009, 43, 4703–4713. [Google Scholar] [CrossRef]
- Gunawardana, C.; Goonetilleke, A.; Egodawatta, P.; Dawes, L.; Kokot, S. Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere 2012, 87, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, R.O.; Strekopytov, S.; Amato, F.; Querol, X.; Reche, C.; Weiss, D. New Insights from Zinc and Copper Isotopic Compositions into the Sources of Atmospheric Particulate Matter from Two Major European Cities. Environ. Sci. Technol. 2016, 50, 9816–9824. [Google Scholar] [CrossRef] [Green Version]
- Mats, G.; Göran, B.; Andreas, D.; Anders, G.; Anders, L.; John, L.; Bertil, R.; Erik, S. Inhalable Particles from the Interaction between Tyres, Road Pavement and Friction Materials; Final Report from the WearTox Project; VTI Rapport; VTI: Linkoping, Sweden, 2005. [Google Scholar]
- Kupiainen, K.J.; Tervahattu, H.; Räisänen, M.; Mäkelä, T.; Aurela, M.; Hillamo, R. Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding. Environ. Sci. Technol. 2004, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Omstedt, G.; Bringfelt, B.; Johansson, C. A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. Atmos. Environ. 2005, 39, 6088–6097. [Google Scholar] [CrossRef]
- Düring, I.; Bächlin, W.; Bösinger, R.; Müller, W.J.; Lohmeyer, A. Experiences when modelling roadside PM10 concen-trations. In Proceedings of the 9th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Garmisch-Partenkirchen, Germany, 1–4 June 2004. [Google Scholar]
- Düring, I.; Jacob, J.; Lohmeyer, A.; Lutz, M.; Reichenbächer, W. Estimation of the ‘Non Exhaust Pipe’ PM10 Emissions of Streets for Practical Traffic Air Pollution Modelling. In Proceedings of the 11th International Symposium Transport and Air Pollution, Graz, Austria, 19 June 2002. [Google Scholar]
- Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W.; Clayton, R.; Proffitt, D. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmos. Environ. 2003, 37, 5283–5293. [Google Scholar] [CrossRef]
- Kukkonen, J.; Härkönen, J.; Karppinen, A.; Pohjola, M.; Pietarila, H.; Koskentalo, T. A semi-empirical model for urban PM10 concentrations, and its evaluation against data from an urban measurement network. Atmos. Environ. 2001, 35, 4433–4442. [Google Scholar] [CrossRef]
- Berger, J.; Denby, B. A generalised model for traffic induced road dust emissions. Model description and evaluation. Atmos. Environ. 2011, 45, 3692–3703. [Google Scholar] [CrossRef]
- Norman, M.; Sundvor, I.; Denby, B.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S. Modelling road dust emission abatement measures using the NORTRIP model: Vehicle speed and studded tyre reduction. Atmos. Environ. 2016, 134, 96–108. [Google Scholar] [CrossRef]
- Mawdsley, I.; Jerksjö, M.; Andersson, S.; Arvelius, J.; Omstedt, G. New Method of Calculating Emissions from Tyre and Brake Wear and Road Abrasion; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2015. [Google Scholar]
- Gidhagen, L.; Johansson, H.; Omstedt, G. SIMAIR—Evaluation tool for meeting the EU directive on air pollution limits. Atmos. Environ. 2009, 43, 1029–1036. [Google Scholar] [CrossRef]
- Nagpure, A.S.; Gurjar, B.; Kumar, V.; Kumar, P. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmos. Environ. 2016, 127, 118–124. [Google Scholar] [CrossRef]
- Singh, S. The demand for road-based passenger mobility in India: 1950-2030 and relevance for developing and developed countries. Eur. J. Transp. Infrastruct. Res. 2006, 6. [Google Scholar] [CrossRef]
Abbreviations | |||||
---|---|---|---|---|---|
AI | Artificial intelligence | EF | Emission factor | NAO | Non-asbestos organic pads |
ANN | Artificial neural network | ELPI+ | Electrical Low-Pressure Impactor | OPS | Optical particle sizer |
APS | Aerodynamic particle sizer | FAST | Friction assessment screening test | PIV | Particle image velocimetry |
BLCF | Brake linings’ coefficient of friction | FEA | Finite element analysis | PM | Particulate matter |
CA | Cellular automaton | FMPS | Fast mobility particle sizer | PM10 | Particulate matter 10 µm or less in diameter |
CFD | Computational fluid dynamics | GDP | Gross domestic product | PM2.5 | Particulate matter 2.5 µm or less in diameter |
CMB | Chemical mass balance | HDV | Heavy-duty vehicle | R&D | Research and development |
CVS | Constant-volume sampling | HEPA | High efficiency particulate air | RDE | Real driving emission |
DMS | Differential mobility spectrometer | LDV | Light-duty vehicle | SEM | Scanning electron microscopy |
DLPI | Dekati Low Pressure Impactor | MCA | Movable cellular automata | TEM | Transmission electron microscopy |
Dyno | Dynamometer | ML | Machine learning | TRAKER | Testing Re-entrained Aerosol Kinetic Emissions from Roads |
EDXS | Energy dispersive X-ray spectroscopy | MLR | Multiple linear regression | VAPI | Vehicular Air Pollution Inventory |
EEA | European Environment Agency | MOUDI | Micro-orifice uniform deposit impactor |
Reference | Ultrafine Particles | Fine Particles | Coarse Particles | |||
---|---|---|---|---|---|---|
Min (µm) | Max (µm) | Min (µm) | Max (µm) | Min (µm) | Max (µm) | |
Nosko et al. [16] | 0.0056 | 0.1 | 0.1 | 2.5 | 2.5 | - |
Nosko et al. [17] | 0.0056 | 0.1 | 0.1 | 0.56 | 0.56 | 10 |
[18,19,20,21,22,23] | - | 0.1 | 0.1 | 2.5 | 2.5 | 10 |
Kumar et al. [24] | - | 0.1 | - | 2.5 | - | 10 |
[25,26] | - | 0.15 | 0.15 | 2.5 | 2.5 | 10 |
Waheed et al. [27] | 0.02 | 0.1 | 0.26 | 1 | 1 | 10 |
Niu et al. [28] | 0.057 | 0.1 | 0.1 | 1 | 1 | 10 |
Chang et al. [29] | 0.05 | 0.1 | 1 | 2.5 | 5 | 10 |
Valavanidis et al. [30] | - | 0.1 | - | 2.5 | - | - |
Reference | Measurement | Emission Type | Emission Factor |
---|---|---|---|
zum Hagen et al. [69] | On-road measurement | PM | Conventional brake material: 1.8–2.1 |
Novel material composition: 1.4–1.7 | |||
Mamakos et al. [109] | Brake dyno and dilution tunnel | PM | 4.8 |
Hagen et al. [108] | Brake dynamometer | PM10 | 4.6 |
Timmers et al. [169] | Review | PM10 | 9.3 |
PM2.5 | 2.2 | ||
Perricone et al. [14] | Brake dynamometer | PM | Low steel pads: 13.7–46.4 |
NAO pads: 8.5–9.2 | |||
Bukowiecki et al. [170] | Sampling | PM10 | 1.6 ± 1.1 |
Hesse et al. [171] | Bedding process | PM10 | 1.2–12.4 |
PM2.5 | 0.8–6 |
Reference | Measurement | Emission Type | Emission Factor |
---|---|---|---|
Lawrence et al. [172] | Sampling | PM10 | 3.8–4.4 |
Hulskotte et al. [173] | Sampling | Brake wear | 8.0–15 |
Grigoratos et al. [168] | Review | PM10 | 6.7 |
Iijima et al. [174] | Brake dynamometer | PM10 | 5.8 |
PM2.5 | 3.9 | ||
Garg et al. [52] | Brake dynamometer | PM10 | 2.9–7.5 |
Piscitello et al. [175] | Review | Brake wear | 1–18.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimi, M.; Bortoluzzi, D.; Wahlström, J. Input Parameters for Airborne Brake Wear Emission Simulations: A Comprehensive Review. Atmosphere 2021, 12, 871. https://doi.org/10.3390/atmos12070871
Rahimi M, Bortoluzzi D, Wahlström J. Input Parameters for Airborne Brake Wear Emission Simulations: A Comprehensive Review. Atmosphere. 2021; 12(7):871. https://doi.org/10.3390/atmos12070871
Chicago/Turabian StyleRahimi, Mostafa, Daniele Bortoluzzi, and Jens Wahlström. 2021. "Input Parameters for Airborne Brake Wear Emission Simulations: A Comprehensive Review" Atmosphere 12, no. 7: 871. https://doi.org/10.3390/atmos12070871
APA StyleRahimi, M., Bortoluzzi, D., & Wahlström, J. (2021). Input Parameters for Airborne Brake Wear Emission Simulations: A Comprehensive Review. Atmosphere, 12(7), 871. https://doi.org/10.3390/atmos12070871