Analysis of Ozone Pollution Characteristics and Influencing Factors in Northeast Economic Cooperation Region, China
Abstract
:1. Introduction
2. Date Sources and Research Methods
2.1. Research Areas and Data Sources
2.2. Research Methods
2.2.1. Spatial Autocorrelation Analysis
2.2.2. Wavelet Analysis of Time Series
3. Results and Discussion
3.1. Spatial Distribution Characteristics of Ozone Concentration
3.1.1. Analysis of Spatial Correlation
3.1.2. Analysis of the Spatial Distribution
3.2. Temporal Distribution Characteristics of Ozone Concentration
3.2.1. Analysis of Seasonal Variation
3.2.2. Analysis of Monthly Variation
3.2.3. Analysis of the Diurnal Variation
3.3. Analysis of the Correlation between Ozone and Other Pollutants/Meteorological Factors
3.4. Time Series of Ozone Concentration
4. Conclusions and Suggestions
4.1. Conclusions
- (1)
- The results of Moran’s I index showed that the O3 pollution of HCUA had a significant spatial positive correlation. Affected by solar radiation, relative humidity and emissions from industrial and traffic sources, the spatial distribution of O3 concentration in the study area was generally higher in the south and lower in the northeast.
- (2)
- The difference of regional O3 concentration between different seasons was mainly affected by meteorological conditions, which was as follows: spring > summer > autumn > winter. Higher concentrations of near-surface ozone in spring may be related to high solar radiation, air quality transport caused by tropopause folding and photochemical process of gases pollutants such as carbon monoxide. The diurnal variation characteristics of O3 concentration in different cities were similar, showed a “single peak” pattern. The valley value appeared between 7:00 and 9:00, and the peak value appeared at 18:00.
- (3)
- The results of correlation analysis showed that there was a significant negative correlation between O3 concentration and CO, NO2, SO2, and PM2.5 concentration. The effects of solar radiation intensity, water vapor, isoprene, and ozone precursors on the process of ozone formation resulted in a significant positive correlation between ozone concentration and temperature and sunshine duration. In addition, the wind speed also had an impact on the transfer of ozone, and correlation between the wind speed and ozone was positively correlated.
- (4)
- The continuous wavelet transform analysis of the time series of ozone concentration in Jilin City showed that there was a significant periodic fluctuation of ozone in the time scale of a = 9,23. This periodic fluctuation was particularly evident from May to July, and temperature and wind speed showed similar time-scale variation characteristics with O3, indicating that them had a great influence on the periodic variation of O3. In addition, its periodicity may be related to the stability of boundary layer, horizontal advection, and other factors.
4.2. Suggestions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehman, J.; Swinton, K.; Bortnick, S.; Hamilton, C.; Baldridge, E.; Eder, B.; Cox, B. Spatio-temporal characterization of tropospheric ozone across the eastern United States. Atmos. Environ. 2004, 38, 4357–4369. [Google Scholar] [CrossRef]
- Pan, G.; Pan, Q.; Zhang, G. The harm of Ozone pollution and the significance of Ozone Monitoring. In Proceedings of the 2013 Annual meeting of the Chinese Society of Environmental Science, Kunming, China, 8 March 2013; p. 5. [Google Scholar]
- Post, E.S.; Grambsch, A.; Weaver, C.; Morefield, P.; Huang, J.; Leung, L.Y.; Nolte, C.G.; Adams, P.; Liang, X.Z.; Zhu, J.H.; et al. Variation in estimated ozone-related health impacts of climate change due to modeling choices and assumptions. Environ. Health Perspect. 2012, 120, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Harmens, H.; Wagg, S.; Sharps, K.; Hayes, F.; Fowler, D.; Sutton, M.; Davies, B. Ozone impacts on vegetation in a nitrogen enriched and changing climate. Environ. Pollut. 2016, 208, 898–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Shang, Y.; Zheng, C.; Ma, Z. Estimated Acute Effects of Ozone on Mortality in a Rural District of Beijing, China, 2005–2013: A Time-Stratified Case-Crossover Study. Int. J. Environ. Res. Public Health 2018, 15, 2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Huang, W.; Huang, X.; Zhong, L.; Lu, S.-E.; Li, Y.; Dai, L.; Zhang, Y.; Zhu, T. Estimated acute effects of ambient ozone and nitrogen dioxide on mortality in the Pearl River Delta of southern China. Environ. Health Perspect. 2012, 120, 393–398. [Google Scholar] [CrossRef]
- Aris, R.M.; Christian, D.; Hearne, P.Q.; Kerr, K.; Finkbeiner, W.E.; Balmes, J.R. Ozone-induced Airway Inflammation in Human Subjects as Determined by Airway Lavage and Biopsy. Am. Rev. Respir. Dis. 1993, 148, 1363–1372. [Google Scholar] [CrossRef]
- Shang, Y.; Sun, Z.; Cao, J.; Wang, X.; Zhong, L.; Bi, X.; Li, H.; Liu, W.; Zhu, T.; Huang, W. Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. Environ. Int. 2013, 54, 100–111. [Google Scholar] [CrossRef]
- Feng, Z.; Kobayashi, K. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos. Environ. 2008, 43, 1510–1519. [Google Scholar] [CrossRef]
- Geng, C.; Wang, Z.; Ren, L.; Wang, Y.; Wang, Q.; Yang, W.; Bai, Z. Study on the Impact of Elevated Atmospheric Ozone on Crop Yield. Res. Environ. Sci. 2014, 27, 239–245. [Google Scholar]
- Li, Q.; Wang, E.; Zhang, T.; Hu, H. Spatial and Temporal Patterns of Air Pollution in Chinese Cities. Water Air Soil Pollut. 2017, 228, 1–22. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, S.; Gong, Z.; Li, H.; Yang, Q.; Wang, Y. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China. J. Environ. Sci. 2018, 67, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Shao, T.; Zhao, J.; Cao, J.; Yue, D. Evolution Law and influencing factors of Spatial pattern of Ozone concentration in Northeast China. Acta Sci. Circumstantiae 2020, 40, 3071–3080. [Google Scholar]
- Cardelino, C.A.; Chameides, W.L. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. J. Air Waste Manag. Assoc. 1995, 45, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, W.; Wu, S.-Y.; Wang, K.; Minoura, H.; Wang, Z. Impacts of updated emission inventories on source apportionment of fine particle and ozone over the southeastern U.S. Atmos. Environ. 2014, 88, 133–154. [Google Scholar] [CrossRef]
- Guo, H.; Chen, K.; Wang, P.; Hu, J.; Ying, Q.; Gao, A.; Zhang, H. Simulation of summer ozone and its sensitivity to emission changes in China. Atmos. Pollut. Res. 2019, 10, 1543–1552. [Google Scholar] [CrossRef]
- Cao, T.; Wu, K.; Kang, P.; Wen, X.; Li, H.; Wang, Y.; Lu, X.; Li, A.; Pan, W.; Fan, W.; et al. Study on ozone pollution characteristics and meteorological cause of Chengdu-Chongqing urban agglomeration. Acta Sci. Circumstantiae 2018, 38, 1275–1284. [Google Scholar]
- Ding, A.J.; Fu, C.B.; Yang, X.Q.; Sun, J.N.; Zheng, L.F.; Xie, Y.N.; Herrmann, E.; Nie, W.; Petäjä, T.; Kerminen, V.M.; et al. Ozone and fine particle in the western Yangtze River Delta: An overview of 1 yr data at the SORPES station. Atmos. Chem. Phys. 2013, 13, 5813–5830. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Wang, L.; Wang, J. Analysis of the Spatial-Temporal Variation of the Surface Ozone Concentration and Its Associated Meteorological Factors in Changchun. Environments 2019, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Toh, Y.Y.; Lim, S.F.; Glasow, R.V. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmos. Environ. 2013, 70, 435–446. [Google Scholar] [CrossRef]
- Silver, B.; Reddington, C.L.; Arnold, S.R.; Spracklen, D.V. Substantial changes in air pollution across China during 2015–2017. Environ. Res. Lett. 2018, 13, 114012. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.Q.; Solmon, F.; Deng, X.J.; Zou, Y.; Deng, T.; Wang, N.; Li, F.; Mai, B.R.; Liu, L. Geographical distribution of ozone seasonality over China. Sci. Total Environ. 2019, 689, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, S.; Liu, R.; Zhou, R.; Li, D.; Wang, W.; Li, Z.; Cheng, T.; Zhou, B. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China. Atmos. Res. 2015, 153, 235–249. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, T.; Gu, X.; Chen, H.; Guo, H.; Wang, Y.; Bao, F.; Shi, S.; Xu, B.; Zuo, X.; et al. Assessing Spatial and Temporal Patterns of Observed Ground-level Ozone in China. Sci. Rep. 2017, 7, 1–2. [Google Scholar] [CrossRef]
- Lu, K.; Zhang, Y.; Su, H.; Shao, M.; Zeng, L.; Zhong, L.; Xiang, Y.; Chang, C.; Chou, C.K.C.; Wahner, A. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time. Sci. China Chem. 2010, 53, 651–663. [Google Scholar] [CrossRef]
- Li, B.; Shi, X.; Liu, Y.; Lu, L.; Wang, G.; Thapa, S.; Sun, X.; Fu, D.; Wang, K.; Qi, H. Long-term characteristics of criteria air pollutants in megacities of Harbin-Changchun megalopolis, Northeast China: Spatiotemporal variations, source analysis, and meteorological effects. Environ. Pollut. 2020, 267, 115441. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yuan, Z.; Wu, Y.; Ban, W.; Li, D.; Ji, C.; Gao, W. Analysis of Persistence and Intensification Mechanism of a Heavy Haze Event in Shenyang. Res. Environ. Sci. 2017, 30, 349–358. [Google Scholar]
- Kang, H.; Liu, Y.; Li, T. Characteristics of Air Quality Index and Its Relationship with Meteorological Factors in Key Cities of Heilongjiang Province. J. Nat. Resour. 2017, 32, 692–703. [Google Scholar]
- Chen, W.; Liu, Y.; Wu, X.; Bao, Q.; Gao, Z.; Zhang, X.; Zhao, H.; Zhang, S.; Xiu, A.; Chen, T. Spatial and Temporal Characteristics of Air Quality and Cause Analysis of Heavy Pollution in Northeast China. Environ. Sci. 2019, 40, 4810–4823. [Google Scholar]
- Heather, S.; Adam, R.; Benjamin, W.; Jia, X.; Neil, F. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ. Sci. Technol. 2015, 49, 186–195. [Google Scholar]
- Guo, R.; Wu, T.; Liu, M.; Huang, M.; Stendardo, L.; Zhang, Y. The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China. Int. J. Environ. Res. Public Health 2019, 16, 1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, M.; Sarma, K.; Sharma, R. Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sens. Appl. Soc. Environ. 2019, 15, 100239. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, C.; Xu, G.; Pan, Y. The Spatio-temporal variation of PM2.5 concentration in Chinese cities in 2014. Acta Geogr. Sin. 2015, 70, 1720–1734. [Google Scholar]
- Wei, P.; Shao, T.; Huang, X.; Zhang, Z. Study on Spatio-temporal variation characteristics and driving factors of Ozone concentration in Northeast China from 2015 to 2018. J. Ecol. Rural Environ. 2020, 36, 988–997. [Google Scholar]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Yang, L.; Wu, S.; Hao, J. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 1997, 276, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- An, J. Plant Volatile Or Ganic Compounds VOCs in Ozone Polluted Atmospheres: The Ecological; Nanjing University of Information Science & Technology: Nanjing, China, 2007. [Google Scholar]
- Jiang, M.; Lu, K.; Su, R.; Tan, Z.; Wang, H.; Li, L.; Fu, Q.; Zhai, C.; Tan, Q.; Yue, D.; et al. Ozone formation and key VOCs in typical Chinese city clusters. Chin. Sci. Bull. 2018, 63, 1130–1141. [Google Scholar] [CrossRef]
- Kavassalis, S.C.; Murphy, J.G. Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett. 2017, 44, 2922–2931. [Google Scholar] [CrossRef]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431–3442. [Google Scholar] [CrossRef]
- Tsakiri, K.G.; Zurbenko, I.G. Determining the main atmospheric factor on ozone concentrations. Meteorol. Atmos. Phys. 2010, 109, 129–137. [Google Scholar] [CrossRef]
- Jian, Y.; daren, L. Diagnosed Seasonal Variation of Stratosphere-Troposphere Exchange in the Northern Hemisphere by 2000 Data. Chin. J. Atmos. Sci. 2004, 28, 294–300. [Google Scholar]
- Haver, P.V.; Muer, D.D.; Beekmann, M.; Mancier, C. Climatology of tropopause folds at midlatitudes. Geophys. Res. Lett. 1996, 23, 1033–1036. [Google Scholar] [CrossRef]
- Oltmans, S.J.; Levy, H. Surface ozone measurements from a global network. Atmos. Environ. 1994, 28, 9–24. [Google Scholar] [CrossRef]
- Penkett, S.A.; Blake, N.J.; Lightman, P.; Marsh, A.R.W.; Anwyl, P.; Butcher, G. The Seasonal Variation of Nonmethane Hydrocarbons in the Free Troposphere Over the North Atlantic Ocean: Possible Evidence for Extensive Reaction of Hydrocarbons With the Nitrate Radical. J. Geophys. Res. Atmos. 1993, 98, 2865–2885. [Google Scholar] [CrossRef]
- Penkett, S.A.; Brice, K.A. The spring maximum in photo-oxidants in the Northern Hemisphere troposphere. Nature 1986, 319, 655–657. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Cui, L.; Fu, H.; Zhang, L.; Kong, L.; Chen, W.; Chen, J. Air pollution characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors. Sci. Total Environ. 2019, 648, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Lal, S.; Naja, M.; Subbaraya, B.H. Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos. Environ. 2000, 34, 2713–2724. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.; Bouhamra, W.; Ettouney, H.; Sowerby, B.; Crittenden, B.D. Predicting ozone levels: A statistical model for predicting ozone levels in the Shuaiba Industrial Area, Kuwait. Environ. Sci. Pollut. Res. Int. 1996, 3, 195–204. [Google Scholar] [CrossRef]
- Doğan, B.; Jebli, M.B.; Shahzad, K.; Farooq, T.H.; Shahzad, U. Investigating the Effects of Meteorological Parameters on COVID-19: Case Study of New Jersey, United States. Environ. Res. 2020, 191, 110148. [Google Scholar] [CrossRef] [PubMed]
- Alexandrino, K.; Zalakeviciute, R.; Viteri, F. Seasonal variation of the criteria air pollutants concentration in an urban area of a high-altitude city. Int. J. Environ. Sci. Technol. 2021, 18, 1167–1180. [Google Scholar] [CrossRef]
- Zexia, D.; Yuanjian, Y.; Linlin, W.; Changwei, L.; Sihui, F.; Chen, C.; Yingxiang, T.; Xinfeng, L.; Zhiqiu, G. Temporal characteristics of carbon dioxide and ozone over a rural-cropland area in the Yangtze River Delta of eastern China. Sci. Total Environ. 2021, 757, 143750. [Google Scholar]
- Kliengchuay, W.; Worakhunpiset, S.; Limpanont, Y.; Meeyai, A.C.; Tantrakarnapa, K. Influence of the meteorological conditions and some pollutants on PM210 concentrations in Lamphun, Thailand. J. Environ. Health Sci. Eng. 2021, 19, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, C.; Garrido-Perez, J.M.; García-Herrera, R. Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. Sci. Total Environ. 2020, 747, 141322. [Google Scholar] [CrossRef] [PubMed]
- Jiawei, X.; Xin, H.; Nan, W.; Yuanyuan, L.; Aijun, D. Understanding ozone pollution in the Yangtze River Delta of eastern China from the perspective of diurnal cycles. Sci. Total Environ. 2021, 752, 141928. [Google Scholar]
- Shen, Y.; Wang, B. Effect of surface solar radiation variations on temperature in South-East China during recent 50 years. Chin. J. Geophys. 2011, 54, 1457–1465. [Google Scholar]
- Daut, I.; Yusoff, M.I.; Ibrahim, S.; Irwanto, M.; Nsurface, G. Relationship between the Solar Radiation and Surface Temperature in Perlis. In Advanced Materials Research; Trans Tech Publications Ltd.: Baech, Switzerland, 2012. [Google Scholar]
- Kotchenruther, R.A.; Jaffe, D.A.; Jaeglé, L. Ozone photochemistry and the role of peroxyacetyl nitrate in the springtime northeastern Pacific troposphere: Results from the Photochemical Ozone Budget of the Eastern North Pacific Atmosphere (PHOBEA) campaign. J. Geophys. Res. 2001, 106, 28731–28742. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Zhang, X.; Dong, Y.; Wang, Y.; Liu, C.; Wang, J.; Zhang, Y.; Che, H. Feedback effects of boundary_layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016. Atmos. Chem. Phys. 2018, 18, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Liu, S.; Guo, J.; Huang, S.; Yan, Y.; Lou, M. Unraveling the relationships between boundary layer height and PM2.5 pollution in China based on four_year radiosonde measurements. Environ. Pollut. 2018, 243, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Che, H.; Zhang, X.; Liu, S. Relationship between summertime concurring PM2.5 and O3 pollution and boundary layer height differs between Beijing and Shanghai, China. Environ. Pollut. 2020, 115775. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y. Observation and Numerical Modeling on the Interaction between Atmospheric Particulate and Ozone in Urban Area of Yangtze River Delta; Nanjing University: Nanjing, China, 2012. [Google Scholar]
- Wang, M. Analysis of Spatio-Temporal Distribution Characteristics and Related Factors of Atmospheric PM2.5 in Shanghai; Shanghai Jiaotong University: Shanghai, China, 2017. [Google Scholar]
- Zeri, M.; Carvalho, V.S.B.; Cunha-Zeri, G.; Oliveira-Júnior, J.F.; Lyra, G.B.; Freitas, E.D. Assessment of the variability of pollutants concentration over the metropolitan area of São Paulo, Brazil, using the wavelet transform. Atmos. Sci. Lett. 2016, 17, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; An, X.; Xing, L.; Li, G.; Tang, G.; He, J.; Long, X.; Zhao, S. Simulated Sensitivity of Ozone Generation to Precursors in Beijing during a High O 3 Episode. Adv. Atmos. Sci. 2021, 38, 1223–1237. [Google Scholar] [CrossRef]
Time | Year | Spr. | Sum | Aut. | Win. |
---|---|---|---|---|---|
Moran’s I | 0.75 | 0.70 | 0.91 | 0.66 | 0.59 |
Z(I) | 4.93 | 4.59 | 5.90 | 4.34 | 3.92 |
P(10−5) | 0.1 | 0.4 | 0 | 1.5 | 9 |
VOCs | SO2 | NOx | PM2.5 | PM10 | CO | |
---|---|---|---|---|---|---|
Industry | 86.56 | 24.58 | 62.12 | 14.75 | 7.84 | 172.69 |
Power | 0.26 | 5.49 | 22.29 | 2.49 | 1.78 | 16.72 |
Residential | 49.69 | 16.63 | 12.73 | 34.05 | 4.67 | 674.75 |
Transportation | 19.35 | 1.67 | 42.41 | 2.96 | 0.07 | 114.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Fang, C.; Qiu, J.; Wang, J. Analysis of Ozone Pollution Characteristics and Influencing Factors in Northeast Economic Cooperation Region, China. Atmosphere 2021, 12, 843. https://doi.org/10.3390/atmos12070843
Tian J, Fang C, Qiu J, Wang J. Analysis of Ozone Pollution Characteristics and Influencing Factors in Northeast Economic Cooperation Region, China. Atmosphere. 2021; 12(7):843. https://doi.org/10.3390/atmos12070843
Chicago/Turabian StyleTian, Jiaqi, Chunsheng Fang, Jiaxin Qiu, and Ju Wang. 2021. "Analysis of Ozone Pollution Characteristics and Influencing Factors in Northeast Economic Cooperation Region, China" Atmosphere 12, no. 7: 843. https://doi.org/10.3390/atmos12070843
APA StyleTian, J., Fang, C., Qiu, J., & Wang, J. (2021). Analysis of Ozone Pollution Characteristics and Influencing Factors in Northeast Economic Cooperation Region, China. Atmosphere, 12(7), 843. https://doi.org/10.3390/atmos12070843