Source Apportionment and Toxicity of PM in Urban, Sub-Urban, and Rural Air Quality Network Stations in Catalonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Air Quality Stations and PM10 Sample Selection
2.2. Air Mass Back-Trajectories
2.3. Organic Molecular Tracer Analysis
2.4. Source Apportionment of Organic Aerosol
2.5. PM Toxicity
3. Results and Discussion
3.1. Atmospheric Conditions
3.2. Air Quality Indicators and Organic Molecular Tracer Concentrations
3.3. Polycyclic Aromatic Hydrocarbons (PAHs) and Quinones (Oxygenated PAHs)
3.4. Source Apportionment of Organic Aerosol and PAHs
3.5. PM Toxicity
3.6. Health Impact of Air Pollution in Catalonia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Complementary Figures
References
- Janssen, N.; Fischer, P.; Marra, M.; Ameling, C.; Cassee, F. Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands. Sci. Total Environ. 2013, 463, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Masseran, N.; Safari, M.A.M. Intensity–duration–frequency approach for risk assessment of air pollution events. J. Environ. Manag. 2020, 264, 110429. [Google Scholar] [CrossRef]
- EEA. Air Quality Standards. 2020. Available online: https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards (accessed on 3 March 2021).
- Global Health Observatory. Public Health and Environment [Online Database]. Available online: https://www.who.int/data/gho/data/themes/public-health-and-environment/GHO/public-health-and-environment (accessed on 25 February 2021).
- World Health Organization. Burden of Disease from Household Air Pollution for 2016. 2018. Available online: https://www.who.int/airpollution/data/HAP_BoD_results_May2018_final.pdf (accessed on 25 February 2021).
- Donahue, N.M.; Robinson, A.L.; Pandis, S.N. Atmospheric organic particulate matter: From smoke to secondary organic aerosol. Atmos. Environ. 2009, 43, 94–106. [Google Scholar] [CrossRef]
- Pastor, R.P.; Salvador, P.; Alonso, S.G.; Alastuey, A.; Dos Santos, S.G.; Querol, X.; Artíñano, B. Characterization of organic aerosol at a rural site influenced by olive waste biomass burning. Chemosphere 2020, 248, 125896. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, B.R. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Van Drooge, B.L.; Grimalt, J.O. Particle size-resolved source apportionment of primary and secondary organic tracer compounds at urban and rural locations in Spain. Atmos. Chem. Phys. 2015, 15, 7735–7752. [Google Scholar] [CrossRef] [Green Version]
- Ortega, A.; Day, D.; Cubison, M.; Brune, W.H.; Bon, D.; De Gouw, J.; Jimenez, J. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3. Atmos. Chem. Phys. 2013, 13, 11551–11571. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.S.; Qiu, X.; Zhang, J.; Wang, S.; Li, X.; Sun, Y.; Chen, J.; Ying, Q. Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model. Environ. Sci. Technol. 2020, 54, 13409–13418. [Google Scholar] [CrossRef] [PubMed]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.; George, C.; Goldstein, A.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, J.L.; Canagaratna, M.; Donahue, N.; Prevot, A.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef]
- Castell, N.; Stein, A.; Salvador, R.; Mantilla, E.; Millán, M. The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season. Adv. Sci. Res. 2008, 2, 9–15. [Google Scholar] [CrossRef]
- Escudero, M.; Lozano, A.; Hierro, J.; del Valle, J.; Mantilla, E. Urban influence on increasing ozone concentrations in a characteristic Mediterranean agglomeration. Atmos. Environ. 2014, 99, 322–332. [Google Scholar] [CrossRef]
- Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: The effect of local biogenic emissions. Atmos. Chem. Phys. 2011, 11, 13161–13179. [Google Scholar] [CrossRef] [Green Version]
- Largeron, Y.; Staquet, C. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos. Environ. 2016, 135, 92–108. [Google Scholar] [CrossRef]
- Millan, M.M.; Mantilla, E.; Salvador, R.; Carratalá, A.; Sanz, M.J.; Alonso, L.; Gangoiti, G.; Navazo, M. Ozone cycles in the western Mediterranean basin: Interpretation of monitoring data in complex coastal terrain. J. Appl. Meteorol. 2000, 39, 487–508. [Google Scholar] [CrossRef]
- Querol, X.; Gangoiti, G.; Mantilla, E.; Alastuey, A.; Minguillón, M.C.; Amato, F.; Reche, C.; Viana, M.; Moreno, T.; Karanasiou, A.; et al. Phenomenology of high-ozone episodes in NE Spain. Atmos. Chem. Phys. 2017, 17, 2817–2838. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, S.; Querol, X.; Alastuey, A.; Mantilla, E. Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. Atmos. Environ. 2002, 36, 3101–3112. [Google Scholar] [CrossRef]
- Soler, M.R.; Gamez, P.; Olid, M. Aramis a regional air quality model for air pollution management: Evaluation and validation. Fis. Tierra 2015, 27, 111–136. [Google Scholar]
- Alier, M.; Van Drooge, B.L.; Dall’Osto, M.; Querol, X.; Grimalt, J.O.; Tauler, R. Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS. Atmos. Chem. Phys. 2013, 13, 10353–10371. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.A. Characterisation of solvent extractable organic constituents in atmospheric particulate matter: An overview. An. Acad. Bras. Cienc. 2008, 80, 21–82. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.; Nunes, T.; Vicente, A.; Gonçalves, C.; Evtyugina, M.; Marques, T.; Pio, C.; Bate-Epey, F. Speciation of organic compounds in aerosols from urban background sites in the winter season. Atmos. Res. 2014, 150, 57–68. [Google Scholar] [CrossRef]
- Claeys, M.; Szmigielski, R.; Kourtchev, I.; Van der Veken, P.; Vermeylen, R.; Maenhaut, W.; Jaoui, M.; Kleindienst, T.E.; Lewandowski, M.; Offenberg, J.H.; et al. Hydroxydicarboxylic acids: Markers for secondary organic aerosol from the photooxidation of α-pinene. Environ. Sci. Technol. 2007, 41, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- Szmigielski, R.; Surratt, J.D.; Gómez-González, Y.; Van der Veken, P.; Kourtchev, I.; Vermeylen, R.; Blockhuys, F.; Jaoui, M.; Kleindienst, T.E.; Lewandowski, M.; et al. 3-methyl-1, 2, 3-butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L24811. [Google Scholar] [CrossRef]
- Schauer, J.J.; Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 2007, 41, 241–259. [Google Scholar] [CrossRef]
- Jaumot, J.; Gargallo, R.; de Juan, A.; Tauler, R. A graphical user-friendly interface for MCR-ALS: A new tool for multivariate curve resolution in MATLAB. Chemom. Intell. Lab. Syst. 2005, 76, 101–110. [Google Scholar] [CrossRef]
- Tauler, R.; Smilde, A.; Kowalski, B. Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J. Chemom. 1995, 9, 31–58. [Google Scholar] [CrossRef]
- Tauler, R. Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst. 1995, 30, 133–146. [Google Scholar] [CrossRef]
- Stanimirova, I.; Tauler, R.; Walczak, B. A comparison of positive matrix factorization and the weighted multivariate curve resolution method. Application to environmental data. Environ. Sci. Technol. 2011, 45, 10102–10110. [Google Scholar] [CrossRef]
- Tauler, R.; Viana, M.; Querol, X.; Alastuey, A.; Flight, R.; Wentzell, P.; Hopke, P. Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos. Environ. 2009, 43, 3989–3997. [Google Scholar] [CrossRef]
- Alier, M.; Felipe, M.; Hernández, I.; Tauler, R. Trilinearity and component interaction constraints in the multivariate curve resolution investigation of NO and O3 pollution in Barcelona. Anal. Bioanal. Chem. 2011, 399, 2015–2029. [Google Scholar] [CrossRef]
- Masseran, N.; Razali, A.; Ibrahim, K.; Zaharim, A.; Sopian, K. Application of the single imputation method to estimate missing wind speed data in Malaysia. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 1780–1784. [Google Scholar] [CrossRef]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time environmental applications and display system: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3.; NCAR Tech Notes-475+ STR; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2008. [Google Scholar]
- Jaén, C.; Udina, M.; Bech, J. Analysis of two heat wave driven ozone episodes in Barcelona and surrounding region: Meteorological and photochemical modeling. Atmos. Environ. 2021, 246, 118037. [Google Scholar] [CrossRef]
- Wetterzentrale. GFSR. Available online: https://www.wetterzentrale.de (accessed on 31 March 2021).
- Galarneau, E. Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmos. Environ. 2008, 42, 8139–8149. [Google Scholar] [CrossRef]
- Nisbet, I.C.; Lagoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Fontal, M.; Van Drooge, B.L.; López, J.F.; Fernández, P.; Grimalt, J.O. Broad spectrum analysis of polar and apolar organic compounds in submicron atmospheric particles. J. Chromatogr. A 2015, 1404, 28–38. [Google Scholar] [CrossRef]
- Prats, R.M.; van Drooge, B.L.; Fernández, P.; Grimalt, J.O. Changes in urban gas-phase persistent organic pollutants during the COVID-19 lockdown in Barcelona. Front. Environ. Sci. 2021, 9, 109. [Google Scholar] [CrossRef]
- Jiménez, P.; Baldasano, J.M. Ozone response to precursor controls in very complex terrains: Use of photochemical indicators to assess O3-NOx-VOC sensitivity in the northeastern Iberian Peninsula. J. Geophys. Res. Atmos. 2004, 109, D20309. [Google Scholar] [CrossRef] [Green Version]
- Sillman, S.; Logan, J.A.; Wofsy, S.C. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J. Geophys. Res. Atmos. 1990, 95, 1837–1851. [Google Scholar] [CrossRef]
- Gangoiti, G.; Millán, M.M.; Salvador, R.; Mantilla, E. Long-range transport and re-circulation of pollutants in the western Mediterranean during the project Regional Cycles of Air Pollution in the West-Central Mediterranean Area. Atmos. Environ. 2001, 35, 6267–6276. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Rodríguez, S.; Viana, M.; Artínano, B.; Salvador, P.; Mantilla, E.; do Santos, S.G.; Patier, R.F.; de La Rosa, J.; et al. Levels of particulate matter in rural, urban and industrial sites in Spain. Sci. Total Environ. 2004, 334, 359–376. [Google Scholar] [CrossRef]
- García, M.Á.; Sánchez, M.L.; de Los Ríos, A.; Pérez, I.A.; Pardo, N.; Fernández-Duque, B. Analysis of PM10 and PM2.5 concentrations in an urban atmosphere in Northern Spain. Arch. Environ. Contam. Toxicol. 2019, 76, 331–345. [Google Scholar] [CrossRef]
- Rovira, J.; Domingo, J.L.; Schuhmacher, M. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 2020, 703, 135538. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate; Psychology Press: Hove, UK, 1992. [Google Scholar]
- Rodríguez, S.; Van Dingenen, R.; Putaud, J.P.; Martins-Dos Santos, S.; Roselli, D. Nucleation and growth of new particles in the rural atmosphere of Northern Italy—Relationship to air quality monitoring. Atmos. Environ. 2005, 39, 6734–6746. [Google Scholar] [CrossRef]
- Van Drooge, B.L.; Ballesta, P.P. The influence of the North-Föhn on tracer organic compounds in ambient air PM10 at a pre-alpine site in Northern Italy. Environ. Pollut. 2010, 158, 2880–2887. [Google Scholar] [CrossRef]
- Cusack, M.; Perez, N.; Pey, J.; Alastuey, A.; Querol, X. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: A 2.5 year study. Atmos. Chem. Phys. 2013, 13, 5173–5187. [Google Scholar] [CrossRef] [Green Version]
- Puxbaum, H.; Caseiro, A.; Sánchez-Ochoa, A.; Kasper-Giebl, A.; Claeys, M.; Gelencsér, A.; Legrand, M.; Preunkert, S.; Pio, C. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J. Geophys. Res. Atmos. 2007, 112, D23S05. [Google Scholar] [CrossRef] [Green Version]
- Van Drooge, B.L. Human exposure to polycyclic aromatic hydrocarbons in urban and rural ambient air. In Occurrence, Fate and Impact of Atmospheric Pollutants on Environmental and Human Health; ACS Publications: Washington, DC, USA, 2013; pp. 59–82. [Google Scholar]
- Van Drooge, B.L.; Crusack, M.; Reche, C.; Mohr, C.; Alastuey, A.; Querol, X.; Prevot, A.; Day, D.A.; Jimenez, J.L.; Grimalt, J.O. Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmos. Environ. 2012, 61, 482–489. [Google Scholar] [CrossRef]
- Esteve, W.; Budzinski, H.; Villenave, E. Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a. Atmos. Environ. 2006, 40, 201–211. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R. Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol. 2002, 36, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Van Drooge, B.L.; Lopez, J.F.; Grimalt, J.O. Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event. Environ. Sci. Pollut. Res. 2012, 19, 4159–4167. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, S.R.; Van Drooge, B.L.; Oliveira, E.; Grimalt, J.O.; Barata, C.; Vieira, N.; Guimarães, L.; Piña, B. Differential embryotoxicity of the organic pollutants in rural and urban air particles. Environ. Pollut. 2015, 206, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, S.; Longhin, E.; Bengalli, R.; Avino, P.; Stabile, L.; Buonanno, G.; Colombo, A.; Camatini, M.; Mantecca, P. In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. Sci. Total Environ. 2019, 649, 1422–1433. [Google Scholar] [CrossRef]
- Chowdhury, P.H.; He, Q.; Lasitza Male, T.; Brune, W.H.; Rudich, Y.; Pardo, M. Exposure of lung epithelial cells to photochemically aged secondary organic aerosol shows increased toxic effects. Environ. Sci. Technol. Lett. 2018, 5, 424–430. [Google Scholar] [CrossRef]
- Fushimi, A.; Nakajima, D.; Furuyama, A.; Suzuki, G.; Ito, T.; Sato, K.; Fujitani, Y.; Kondo, Y.; Yoshino, A.; Ramasamy, S.; et al. Source contributions to multiple toxic potentials of atmospheric organic aerosols. Sci. Total Environ. 2021, 773, 145614. [Google Scholar] [CrossRef]
- Alemany, S.; Vilor-Tejedor, N.; García-Esteban, R.; Bustamante, M.; Dadvand, P.; Esnaola, M.; Mortamais, M.; Forns, J.; Van Drooge, B.L.; Álvarez-Pedrerol, M.; et al. Traffic-Related Air Pollution, APOE ε 4 Status, and Neurodevelopmental Outcomes among School Children Enrolled in the BREATHE Project (Catalonia, Spain). Environ. Health Perspect. 2018, 126, 087001. [Google Scholar] [CrossRef] [Green Version]
- Mortamais, M.; Pujol, J.; Van Drooge, B.L.; Macià, D.; Martínez-Vilavella, G.; Reynes, C.; Sabatier, R.; Rivas, I.; Grimalt, J.; Forns, J.; et al. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. Environ. Int. 2017, 105, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Caraka, R.E.; Chen, R.C.; Toharudin, T.; Pardamean, B.; Yasin, H.; Wu, S.H. Prediction of status particulate matter 2.5 using state Markov chain stochastic process and HYBRID VAR-NN-PSO. IEEE Access 2019, 7, 161654–161665. [Google Scholar] [CrossRef]
- Masseran, N.; Safari, M.A.M. Modeling the transition behaviors of PM 10 pollution index. Environ. Monit. Assess. 2020, 192, 1–15. [Google Scholar] [CrossRef]
- Pay, M.; Jiménez-Guerrero, P.; Jorba, O.; Basart, S.; Querol, X.; Pandolfi, M.; Baldasano, J. Spatio-temporal variability of concentrations and speciation of particulate matter across Spain in the CALIOPE modeling system. Atmos. Environ. 2012, 46, 376–396. [Google Scholar] [CrossRef] [Green Version]
- Rohr, A.C.; Wyzga, R.E. Attributing health effects to individual particulate matter constituents. Atmos. Environ. 2012, 62, 130–152. [Google Scholar] [CrossRef]
- Mesquita, S.R.; van Drooge, B.L.; Dall’Osto, M.; Grimalt, J.O.; Barata, C.; Vieira, N.; Guimarães, L.; Piña, B. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona). Environ. Sci. Pollut. Res. 2017, 24, 15406–15415. [Google Scholar] [CrossRef] [PubMed]
- Pacitto, A.; Stabile, L.; Viana, M.; Scungio, M.; Reche, C.; Querol, X.; Alastuey, A.; Rivas, I.; Álvarez-Pedrerol, M.; Sunyer, J.; et al. Particle-related exposure, dose and lung cancer risk of primary school children in two European countries. Sci. Total Environ. 2018, 616, 720–729. [Google Scholar] [CrossRef]
Day | Long-Scale Advection | Barcelona | Manlleu | Bellver | |||
---|---|---|---|---|---|---|---|
WD (sd) (Degrees) | WS (sd) (m/s) | WD (sd) (Degrees) | WS (sd) (m/s) | WD (sd) (Degrees) | WS (sd) (m/s) | ||
2/8 | Weak Atlantic— Gulf of Lyon | 244 (79) | 2 (1) | 61 (60) | 2 (1) | 278 (47) | 3 (1) |
16/11 | Atlantic | 314 (46) | 6 (3) | 214 (37) | 3 (2) | 254 (39) | 3 (2) |
20/11 | Continental | 316 (37) | 2 (1) | 202 (8) | 5 (2) | 242 (21) | 3 (2) |
18/12 | African | 336 (27) | 3 (1) | 178 (88) | 1 (1) | 311 (61) | 2 (1) |
22/12 | Strong Atlantic | 269 (11) | 9 (2) | 240 (11) | 8 (2) | 269 (14) | 11 (3) |
BCN | Manlleu | Bellver | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
02/08/2019 | 16/11/2019 | 20/11/2019 | 18/12/2019 | 22/12/2019 | 02/08/2019 | 16/11/2019 | 20/11/2019 | 18/12/2019 | 22/12/2019 | 02/08/2019 | 16/11/2019 | 20/11/2019 | 18/12/2019 | 22/12/2019 | |
PM | 28 | 13 | 22 | 102 | 14 | 31 | 15 | 42 | 81 | 12 | 16 | 11 | 13 | 39 | 6 |
NO | 51 | 40 | 74 | 62 | 19 | 16 | 18 | 12 | 36 | 17 | 3 | 10 | 12 | 10 | 2 |
O | 85 | 22 | 9 | 9 | 59 | 90 | 23 | 15 | 5 | 52 | 63 | 36 | 29 | 16 | 67 |
succinic_acid (SA; m/z 247) | 5.15 | 3.07 | 5.27 | 9.98 | 2.72 | 6.72 | 2.80 | 6.81 | 9.62 | 2.65 | 15.48 | 12.83 | 13.48 | 15.80 | 16.41 |
glutaric_acid (GLU; m/z 261) | 1.44 | 0.51 | 0.93 | 4.31 | 1.50 | 1.17 | 0.56 | 2.23 | 3.71 | 0.52 | 1.89 | 3.08 | 3.33 | 5.50 | 2.77 |
azealic_acid (AZA; m/z 317) | 6.36 | 3.92 | 14.06 | 8.90 | 3.27 | 6.14 | 4.88 | 13.75 | 15.46 | 2.00 | 6.69 | 11.13 | 12.20 | 24.39 | 6.25 |
phthalic acid (PHA; m/z 295) | 1.68 | 1.20 | 3.63 | 9.47 | 15.88 | 3.39 | 2.22 | 10.68 | 10.67 | 0.51 | 2.48 | 4.33 | 4.41 | 8.02 | 2.23 |
cis pinonic_acid (CPA; m/z 171) | 0.53 | 1.27 | 1.84 | 3.22 | 2.20 | 0.61 | 1.51 | 1.21 | 0.57 | 0.47 | 0.84 | 2.81 | 2.70 | 3.85 | 2.53 |
malic acid (MA; m/z 233) | 8.19 | 0.90 | 2.80 | 1.69 | 1.90 | 39.11 | 5.09 | 6.86 | 3.11 | 0.63 | 47.06 | 2.58 | 2.62 | 2.28 | 2.11 |
3-hydroxyglutaric (HGA; m/z 249) | 5.05 | 1.49 | 2.13 | 0.44 | 0.69 | 11.82 | 0.85 | 3.27 | 2.10 | 0.29 | 24.58 | 1.31 | 1.56 | 1.04 | 0.68 |
3-methyl-1,2,3-butanetricarboxylic acid (MBTCA: m/z 405) | 5.11 | 0.63 | 0.47 | 0.11 | 1.29 | 13.51 | 1.00 | 1.74 | 0.56 | 0.07 | 13.63 | 0.15 | 0.46 | 0.25 | 0.16 |
2-metylglyceric_acid (MGA; m/z 219) | 24.45 | 0.30 | 0.72 | 2.18 | 0.62 | 26.05 | 0.92 | 1.58 | 1.04 | 0.27 | 51.62 | 1.24 | 1.76 | 1.97 | 1.14 |
2-methylthreitol (2MT1; m/z 219) | 3.75 | 0.28 | 1.04 | 1.79 | 0.21 | 2.77 | 0.70 | 2.01 | 0.61 | 0.08 | 20.27 | 2.90 | 2.19 | 7.97 | 1.10 |
2-methylerythritol (2MT2; m/z 219) | 12.44 | 0.53 | 2.29 | 6.50 | 0.61 | 15.72 | 2.17 | 3.16 | 2.04 | 0.12 | 101 | 4.40 | 3.07 | 7.60 | 2.15 |
galactosan (GAL; m/z 217) | 0.17 | 6.41 | 5.76 | 10.89 | 1.29 | 0.32 | 29.28 | 92.9 | 161 | 1.62 | 1.06 | 46.26 | 49.00 | 78.9 | 6.00 |
mannosan (MAN; m/z 204) | 0.37 | 7.75 | 8.15 | 12.12 | 1.18 | 0.58 | 29.03 | 99.3 | 343 | 6.91 | 7.10 | 85.3 | 97.7 | 117 | 17.99 |
levoglucosan (LEV; m/z 204) | 5.52 | 74.4 | 91.8 | 135 | 17.14 | 5.90 | 400 | 1384 | 4978 | 96.9 | 36.90 | 829 | 963 | 1168 | 290 |
17a(H)21(H)-29-norhopane (norHOP; m/z 191) | 0.091 | 0.173 | 0.527 | 0.460 | 0.137 | 0.021 | 0.028 | 0.175 | 0.181 | 0.009 | 0.008 | 0.025 | 0.048 | 0.065 | 0.011 |
17a(H)21(H)-hopane (HOP; m/z 191) | 0.232 | 0.230 | 0.533 | 0.556 | 0.124 | 0.038 | 0.030 | 0.179 | 0.150 | 0.010 | 0.012 | 0.031 | 0.051 | 0.056 | 0.012 |
benzo[a]fluorenone (BAF; m/z 230) | 0.028 | 0.045 | 0.065 | 0.069 | 0.023 | 0.008 | 0.041 | 0.164 | 0.377 | 0.014 | 0.004 | 0.075 | 0.075 | 0.114 | 0.013 |
benzo[b]fluorenone (BBF; m/z 230) | 0.011 | 0.048 | 0.066 | 0.060 | 0.015 | 0.005 | 0.064 | 0.316 | 0.765 | 0.017 | 0.009 | 0.174 | 0.147 | 0.290 | 0.024 |
benzanthrone (BA; m/z 230) | 0.014 | 0.051 | 0.087 | 0.077 | 0.018 | 0.008 | 0.155 | 0.712 | 1.536 | 0.034 | 0.005 | 0.405 | 0.336 | 0.487 | 0.056 |
benz[a]anthracene (BAA; m/z 228) | 0.04 | 0.07 | 0.25 | 0.22 | 0.05 | 0.02 | 0.16 | 1.46 | 1.48 | 0.04 | 0.01 | 0.39 | 0.38 | 0.59 | 0.05 |
chrysene + triphenylene (C + T; m/z 228) | 0.06 | 0.15 | 0.36 | 0.41 | 0.08 | 0.06 | 0.28 | 1.94 | 3.00 | 0.07 | 0.02 | 0.59 | 0.49 | 1.01 | 0.09 |
benzo[b + j]fluoranthene (BBJFL; m/z 252) | 0.08 | 0.22 | 0.67 | 0.60 | 0.05 | 0.05 | 0.61 | 5.94 | 6.37 | 0.06 | 0.02 | 1.87 | 1.47 | 3.69 | 0.14 |
benzo[k]fluoranthene (BKFL; m/z 252) | 0.03 | 0.09 | 0.24 | 0.18 | 0.05 | 0.02 | 0.18 | 1.84 | 1.83 | 0.03 | 0.01 | 0.58 | 0.49 | 1.17 | 0.05 |
benzo[e]pyrene (BEP; m/z 252) | 0.14 | 0.19 | 0.53 | 0.40 | 0.11 | 0.06 | 0.34 | 3.01 | 3.53 | 0.05 | 0.03 | 0.95 | 0.77 | 1.42 | 0.13 |
benzo[a]pyrene (BAP; m/z 252) | 0.06 | 0.11 | 0.40 | 0.33 | 0.04 | 0.04 | 0.25 | 3.35 | 3.24 | 0.03 | 0.01 | 0.97 | 0.82 | 1.60 | 0.08 |
indeno[123cd]pyrene (IP; m/z 276) | 0.05 | 0.15 | 0.35 | 0.31 | 0.05 | 0.04 | 0.41 | 2.33 | 2.49 | 0.07 | 0.02 | 1.00 | 0.65 | 1.13 | 0.14 |
dibenzo[ah]anthracene (DAA; m/z 278) | 0.01 | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.09 | 0.62 | 0.62 | 0.02 | 0.01 | 0.13 | 0.13 | 0.27 | 0.03 |
benzo[ghi]perylene (BGP; m/z 276) | 0.11 | 0.27 | 0.65 | 0.73 | 0.10 | 0.05 | 0.52 | 3.86 | 4.09 | 0.09 | 0.03 | 1.16 | 0.92 | 1.60 | 0.18 |
PAH | 0.6 | 1.3 | 3.5 | 3.2 | 0.6 | 0.3 | 2.8 | 24.4 | 26.7 | 0.5 | 0.2 | 7.7 | 6.1 | 12.5 | 0.9 |
BAP/(BAP + BEP) | 0.29 | 0.38 | 0.43 | 0.45 | 0.25 | 0.42 | 0.43 | 0.53 | 0.48 | 0.42 | 0.34 | 0.50 | 0.51 | 0.53 | 0.38 |
IP/(IP + BGP) | 0.31 | 0.35 | 0.35 | 0.30 | 0.34 | 0.47 | 0.44 | 0.38 | 0.38 | 0.42 | 0.45 | 0.46 | 0.42 | 0.41 | 0.44 |
TEQ_PAH | 0.2 | 0.3 | 0.8 | 0.7 | 0.1 | 0.1 | 0.9 | 8.0 | 8.0 | 0.1 | 0.0 | 2.1 | 1.9 | 3.8 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaén, C.; Villasclaras, P.; Fernández, P.; Grimalt, J.O.; Udina, M.; Bedia, C.; van Drooge, B.L. Source Apportionment and Toxicity of PM in Urban, Sub-Urban, and Rural Air Quality Network Stations in Catalonia. Atmosphere 2021, 12, 744. https://doi.org/10.3390/atmos12060744
Jaén C, Villasclaras P, Fernández P, Grimalt JO, Udina M, Bedia C, van Drooge BL. Source Apportionment and Toxicity of PM in Urban, Sub-Urban, and Rural Air Quality Network Stations in Catalonia. Atmosphere. 2021; 12(6):744. https://doi.org/10.3390/atmos12060744
Chicago/Turabian StyleJaén, Clara, Paula Villasclaras, Pilar Fernández, Joan O. Grimalt, Mireia Udina, Carmen Bedia, and Barend L. van Drooge. 2021. "Source Apportionment and Toxicity of PM in Urban, Sub-Urban, and Rural Air Quality Network Stations in Catalonia" Atmosphere 12, no. 6: 744. https://doi.org/10.3390/atmos12060744
APA StyleJaén, C., Villasclaras, P., Fernández, P., Grimalt, J. O., Udina, M., Bedia, C., & van Drooge, B. L. (2021). Source Apportionment and Toxicity of PM in Urban, Sub-Urban, and Rural Air Quality Network Stations in Catalonia. Atmosphere, 12(6), 744. https://doi.org/10.3390/atmos12060744