Assessment of Air Pollution before, during and after the COVID-19 Pandemic Lockdown in Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Data and Study Period
2.3. Statistical Analysis and Data Visualization
3. Results and Discussion
3.1. Changes in Different Pollutants before, during and after the Lockdown Phases
3.2. Spatial Concentration Pattern of PM10
3.3. Spatial Concentration Pattern of PM2.5
3.4. Spatial Concentration Pattern of SO2
3.5. Spatial Concentration Pattern of NO2
3.6. Spatial Concentration Pattern of CO
3.7. Spatial Concentration Pattern of O3
3.8. Correlation between Different Air Pollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, Y.; Yang, B.; Lin, S.; Bloom, M.S.; Nie, Z.; Ou, Y.; Mai, J.; Wu, Y.; Gao, X.; Dong, G.; et al. Associations of greenness with gestational diabetes mellitus: The Guangdong Registry of Congenital Heart Disease (GRCHD) study. Environ. Pollut. 2020, 266, 115127. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Wang, M.; Huang, C.; Kinney, P.L.; Anastas, P.T. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. Lancet Planet. Health 2020, 4, e210–e212. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19) Situation report-202(EB/OL). Available online: https://www.who.int/docs/default-source/coronaviruse/situa-tion-reports/20200505covid-19-sitrep-106.pdf?sfvrsn¼47090f63_2 (accessed on 10 August 2020).
- Vellingiri, B.; Jayaramayya, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharan, B.; Ganesan, S.; Venugopal, A.; Venkatesan, D.; Ganesan, H.; et al. COVID-19: A promising cure for the global panic. Sci. Total Environ. 2020, 725, 138277. [Google Scholar] [CrossRef]
- Deng, S.-Q.; Peng, H.-J. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J. Clin. Med. 2020, 9, 575. [Google Scholar] [CrossRef] [Green Version]
- Freedman, A.; Tierney, L. The Silver Lining to Coronavirus Lockdowns: Air Quality is Improving. The Washington Post, 9 April 2020. Available online: https://www.washingtonpost.com/weather/2020/04/09/air-quality-improving-coronavirus/ (accessed on 9 April 2020).
- Singh, R.P.; Chauhan, A. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Qual. Atmos. Health 2020, 13, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Xu, H.; Yan, C.; Fu, Q.; Xiao, K.; Yu, Y.; Han, D.; Wang, W.; Cheng, J. Possible environmental effects on the spread of COVID-19 in China. Sci. Total Environ. 2020, 731, 139211. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [Google Scholar] [CrossRef]
- Dutheil, F.; Baker, J.S.; Navel, V. COVID-19 as a factor influencing air pollution? Environ. Pollut. 2020, 263, 114466. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M. How Much, How Long, What, and Where: Air Pollution Exposure Assessment for Epidemiologic Studies of Respiratory Disease. Proc. Am. Thorac. Soc. 2010, 7, 111–115. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Communication from the Commission to the Council and the European Parliament—Thematic Strategy on Air Pollution; European Commission; (COM(2005) 0446 Final); European Environment Agency: København, Denmark, 2005.
- Gautam, S. COVID-19: Air pollution remains low as people stay at home. Air Qual. Atmosphere Health 2020, 13, 853–857. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, T.; Masui, T. Exploring effective short-lived climate pollutant mitigation scenarios by considering synergies and trade-offs of combinations of air pollutant measures and low carbon measures towards the level of the 2 °C target in Asia. Environ. Pollut. 2020, 261, 113650. [Google Scholar] [CrossRef]
- Chen, Q.-X.; Huang, C.-L.; Yuan, Y.; Tan, H.-P. Influence of COVID-19 Event on Air Quality and their Association in Mainland China. Aerosol Air Qual. Res. 2020, 20, 1541–1551. [Google Scholar] [CrossRef]
- NASA. Airborne Nitrogen Dioxide Plummets over China; NASA: Washington, DC, USA, 2020.
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, A.; Chen, X.; Farooq, T.H.; Shahzad, U.; Ashraf, F.; Rehman, A.; Sahar, N.; Yan, W. Fluctuations in environ-mental pollutants and air quality during the lockdown in the USA and China: Two sides of COVID-19 pandemic. Air. Qual. Atmos. Health 2020. [Google Scholar] [CrossRef]
- Agarwal, A.; Kaushik, A.; Kumar, S.; Mishra, R.K. Comparative study on air quality status in Indian and Chinese cities before and during the COVID-19 lockdown period. Air Qual. Atmos. Health 2020, 13, 1167–1178. [Google Scholar] [CrossRef]
- Yue, X.; Lei, Y.D.; Zhou, H.; Liu, Z.; Cai, Z.; Lin, J.; Jiang, Z.; Liao, H. Changes of anthropogenic carbon emissions and air pollutants during the COVID-19 epidemic in China (in Chinese). Trans. Atmos. Sci. 2020, 43, 265–274. [Google Scholar]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A. Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analysis. Air Qual. Atmos. Health 2020, 13, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Lin, H.; Feng, X.; Fu, T.-M.; Wang, Y. NOx Emission Reduction and Recovery during COVID-19 in East China. Atmosphere 2020, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Vîrghileanu, M.; Săvulescu, I.; Mihai, B.-A.; Nistor, C.; Dobre, R. Nitrogen Dioxide (NO2) Pollution monitoring with Sen-tinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sens. 2020, 12, 3575. [Google Scholar] [CrossRef]
- Griffin, D.; McLinden, C.A.; Racine, J.; Moran, M.D.; Fioletov, V.; Pavlovic, R.; Mashayekhi, R.; Zhao, X.; Eskes, H. As-sessing the impact of corona-virus-19 on nitrogen dioxide levels over Southern Ontario, Canada. Remote Sens. 2020, 12, 4112. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.-F.; van Gent, J.; Eskes, H.; Levelt, P.F.; Van Der, A.R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observa-tions. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef] [PubMed]
- Lorente, A.; Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; Van Geffen, J.H.G.M.; De Zeeuw, M.B.; Van Der Gon, H.A.C.D.; Beirle, S.; Krol, M.C. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPO-MI. Sci. Rep. 2019, 9, 20033. [Google Scholar] [CrossRef] [PubMed]
- Solberg, S.; Walker, S.-E.; Schneider, P.; Guerreiro, C. Quantifying the Impact of the Covid-19 Lockdown Measures on Nitrogen Dioxide Levels throughout Europe. Atmosphere 2021, 12, 131. [Google Scholar] [CrossRef]
- Wang, Z.; Uno, I.; Yumimoto, K.; Itahashi, S.; Chen, X.; Yang, W.; Wang, Z. Impacts of COVID-19 lockdown, spring fes-tival and meteorology on the NO2variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations. Atmos. Environ. 2021, 244, 117972. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.L.; Anenberg, S.C.; Griffin, D.; McLinden, C.A.; Lu, Z.; Streets, D. Disentangling the impact of the COVID-19 lockdowns on urban NO 2 from natural variability. Geophys. Res. Lett. 2020, 47, 47. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Thomas, R.; El-Askary, H.; Piechota, T.; Struppa, D.; Ghaffar, K.A.A. Investigating the Significance of Aerosols in Determining the Coronavirus Fatality Rate Among Three European Countries. Earth Syst. Environ. 2020, 4, 513–522. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.V.; Debele, S.E.; Zavala-Reyes, J.C.; Bar-wise, Y.; Tiwari, A. Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-o’ during COVID-19 lockdown in Indian cities. Sustain. Cities Soc. 2020, 62, 102382. [Google Scholar] [CrossRef]
- Islam, S.; Tusher, T.R.; Roy, S.; Rahman, M. Impacts of nationwide lockdown due to COVID-19 outbreak on air quality in Bangladesh: A spatiotemporal analysis. Air Qual. Atmos. Health 2021, 14, 351–363. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.H.; Fu, J.S.; Huang, C.; Streets, D.; Huang, H.Y.; Zhang, G.F.; Wang, Y.J.; Jang, C.J.; Wang, H.L.; et al. Air quality and emissions in the Yangtze River Delta, China. Atmos. Chem. Phys. Discuss. 2011, 11, 1621–1639. [Google Scholar] [CrossRef] [Green Version]
- Zu, Y.; Hu, J.; Chen, M.; Huang, L.; Zhao, Z.; Liu, H.; Zhang, H.; Ying, Q. Investigation of relationships between meteorological conditions and high PM10 pollution in a megacity in the western Yangtze River Delta, China. Air Qual. Atmos. Health 2017, 5, 383–724. [Google Scholar] [CrossRef]
- Nanjing Municipal Government. Available online: http://www.nanjing.gov.cn (accessed on 21 December 2018).
- Singh, V.; Sahu, S.K.; Kesarkar, A.P.; Biswal, A. Estimation of high resolution emissions from road transport sector in a megacity Delhi. Urban Clim. 2018, 26, 109–120. [Google Scholar] [CrossRef]
- Lu, Z.; Streets, D.G.; Foy, D.B.; Krotkov, N.A. Ozone Monitoring Instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012. Environ. Sci. Technol. 2013, 47, 13993–14000. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, L.; Liu, X.; Gao, M.; Zhao, Y.; Shao, J. Lower tropospheric ozone over India and its linkage to the South Asian monsoon. Atmos. Chem. Phys. Discuss. 2018, 18, 3101–3118. [Google Scholar] [CrossRef] [Green Version]
- Marinello, S.; Lolli, F.; Gamberini, R. Roadway tunnels: A critical review of air pollutant concentrations and vehicular emissions. Transp. Res. Part D Transp. Environ. 2020, 86, 102478. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Z.; Cui, H.; Wang, T.; Zhang, C.; Yun, K. Air pollution and critical air pollutant assessment during and after COVID-19 lockdowns: Evidence from pandemic hotspots in China, the Republic of Korea, Japan, and India. Atmos. Pollut. Res. 2021, 12, 316–329. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Y.; Ma, Z.; Jin, Z.; Liu, X.; Wang, H.; Liu, Y.; Wang, J.; Jantunen, M.; Bi, J.; et al. Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environ. Int. 2017, 98, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Guo, M.; Fan, L.; Deng, Q.; Han, D.; Wei, Y.; Luo, J.; Qin, G.; Cheng, J. Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown. Environ. Pollut. 2021, 272, 115927. [Google Scholar] [CrossRef] [PubMed]
- Holloway, T.; Levy, H.; Kasibhatla, P. Global distribution of carbon monoxide. J. Geophys. Res. Space Phys. 2000, 105, 12123–12147. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Lal, S.; Naja, M.; Subbaraya, B. Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos. Environ. 2000, 34, 2713–2724. [Google Scholar] [CrossRef]
Pollutants | before Lockdown | during Lockdown | Avg. before and during Lockdown | after Lockdown | Variation (during and before Lockdown) | Variation (after Lockdown and Avg. of before and during Lockdown) | ||
---|---|---|---|---|---|---|---|---|
Net | % | Net | % | |||||
PM10 | ||||||||
Maximum | 355.76 | 170.79 | 263.28 | 111.45 | −184.97 | −51.99 | −151.83 | −57.67 |
Average | 83.47 | 60.34 | 71.91 | 54.9 | −23.13 | −27.71 | −17.01 | −23.65 |
Minimum | 30.43 | 13.22 | 21.83 | 15.4 | −17.21 | −56.56 | −6.43 | −29.44 |
PM2.5 | ||||||||
Maximum | 107.18 | 134.64 | 120.91 | 47.58 | 27.46 | 25.62 | −73.33 | −60.65 |
Average | 42.64 | 40.47 | 41.56 | 27.67 | −2.17 | −5.09 | −13.89 | −33.41 |
Minimum | 10.96 | 8.95 | 9.96 | 7.61 | −2.01 | −18.34 | −2.35 | −23.56 |
SO2 | ||||||||
Maximum | 20.28 | 16.30 | 18.29 | 16.11 | −3.98 | −19.63 | −2.18 | −11.92 |
Average | 9.15 | 6.14 | 7.65 | 8.1 | −3.01 | −32.90 | 0.46 | 5.95 |
Minimum | 3.66 | 2.99 | 3.33 | 3.89 | −0.67 | −18.31 | 0.57 | 16.99 |
NO2 | ||||||||
Maximum | 103.23 | 74.34 | 88.79 | 61.92 | −28.89 | −27.99 | −26.87 | −30.26 |
Average | 52.86 | 34.54 | 43.70 | 33.78 | −18.32 | −34.66 | −9.92 | −22.70 |
Minimum | 13.56 | 12.52 | 13.04 | 12.55 | −1.04 | −7.67 | −0.49 | −3.76 |
CO | ||||||||
Maximum | 1.58 | 1.61 | 1.60 | 1.27 | 0.03 | 1.90 | −0.33 | −20.38 |
Average | 0.89 | 0.74 | 0.82 | 0.84 | −0.15 | −16.85 | 0.03 | 3.07 |
Minimum | 0.40 | 0.35 | 0.38 | 0.59 | −0.05 | −12.50 | 0.22 | 57.33 |
O3 | ||||||||
Maximum | 115.28 | 97.05 | 106.17 | 165.61 | −18.23 | −15.81 | 59.45 | 55.99 |
Average | 45.97 | 57.67 | 51.82 | 89.18 | 11.7 | 25.45 | 37.36 | 72.10 |
Minimum | 5.72 | 8.02 | 6.87 | 32.55 | 2.3 | 40.21 | 25.68 | 373.80 |
Pollutants | 2017 | 2018 | 2019 | Avg. of 2017–2019 | 2020 | Variation (2020 and 2019) | Variation (2020 and Avg. of 2017–2019) | ||
---|---|---|---|---|---|---|---|---|---|
Net | % | Net | % | ||||||
PM10 | |||||||||
Maximum | 237.96 | 304.96 | 194.38 | 245.77 | 170.79 | −23.59 | −12.14 | −74.98 | −30.51 |
Average | 93.57 | 102.75 | 95.62 | 97.31 | 60.34 | −35.28 | −36.90 | −36.97 | −37.99 |
Minimum | 27.05 | 16.35 | 25.60 | 23.00 | 13.22 | −12.38 | −48.36 | −9.78 | −42.52 |
PM2.5 | |||||||||
Maximum | 159.87 | 217.46 | 150.48 | 175.94 | 134.64 | −15.84 | −10.53 | −41.30 | −23.47 |
Average | 55.30 | 65.36 | 62.08 | 60.91 | 40.47 | −21.61 | −34.81 | −20.44 | −33.56 |
Minimum | 15.16 | 11.99 | 15.27 | 14.14 | 8.95 | −6.32 | −41.39 | −5.19 | −36.70 |
SO2 | |||||||||
Maximum | 36.62 | 28.94 | 20.93 | 28.83 | 16.30 | −4.63 | −22.12 | −12.53 | −43.46 |
Average | 19.24 | 13.39 | 10.92 | 14.52 | 6.14 | −4.78 | −43.77 | −8.38 | −57.70 |
Minimum | 9.02 | 5.27 | 4.60 | 6.30 | 2.99 | −1.61 | −35.00 | −3.31 | −52.51 |
NO2 | |||||||||
Maximum | 114.33 | 109.81 | 91.51 | 105.22 | 74.34 | −17.17 | −18.76 | −30.88 | −29.35 |
Average | 52.57 | 53.17 | 47.55 | 51.10 | 34.54 | −13.01 | −27.36 | −16.56 | −32.40 |
Minimum | 16.53 | 21.33 | 14.66 | 17.51 | 12.52 | −2.14 | −14.60 | −4.99 | −28.48 |
CO | |||||||||
Maximum | 2.26 | 1.97 | 1.55 | 1.93 | 1.61 | 0.06 | 3.87 | −0.32 | −16.44 |
Average | 1.17 | 0.89 | 0.93 | 1.00 | 0.74 | −0.19 | −20.43 | −0.26 | −25.75 |
Minimum | 0.63 | 0.44 | 0.37 | 0.48 | 0.35 | −0.02 | −5.41 | −0.13 | −27.08 |
O3 | |||||||||
Maximum | 110.12 | 83.46 | 87.27 | 93.62 | 97.05 | 9.78 | 11.21 | 3.43 | 3.67 |
Average | 60.15 | 50.50 | 45.76 | 52.14 | 57.67 | 11.91 | 26.03 | 5.53 | 10.61 |
Minimum | 18.00 | 11.54 | 6.44 | 11.99 | 8.02 | 1.58 | 24.53 | −3.97 | −33.13 |
Pollutants | 2017 | 2018 | 2019 | Avg. of 2017–2019 | during Lockdown (2020) | after Lockdown | Variation (after and during Lockdown) | Variation (after lockdown and Avg. of 2017–2019) | ||
---|---|---|---|---|---|---|---|---|---|---|
Net | % | Net | % | |||||||
PM10 | ||||||||||
Maximum | 237.96 | 304.96 | 194.38 | 245.77 | 170.79 | 111.45 | −59.34 | −34.74 | −134.32 | −54.65 |
Average | 93.57 | 102.75 | 95.62 | 97.31 | 60.34 | 54.9 | −5.44 | −9.02 | −42.41 | −43.58 |
Minimum | 27.05 | 16.35 | 25.60 | 23.00 | 13.22 | 15.4 | 2.18 | 16.49 | −7.60 | −33.04 |
PM2.5 | ||||||||||
Maximum | 159.87 | 217.46 | 150.48 | 175.94 | 134.64 | 47.58 | −87.06 | −64.66 | −128.36 | −72.96 |
Average | 55.30 | 65.36 | 62.08 | 60.91 | 40.47 | 27.67 | −12.8 | −31.63 | −33.24 | −54.57 |
Minimum | 15.16 | 11.99 | 15.27 | 14.14 | 8.95 | 7.61 | −1.34 | −14.97 | −6.53 | −46.18 |
SO2 | ||||||||||
Maximum | 36.62 | 28.94 | 20.93 | 28.83 | 16.30 | 16.11 | −0.19 | −1.17 | −12.72 | −44.12 |
Average | 19.24 | 13.39 | 10.92 | 14.52 | 6.14 | 8.1 | 1.96 | 31.92 | −6.42 | −44.20 |
Minimum | 9.02 | 5.27 | 4.60 | 6.30 | 2.99 | 3.89 | 0.9 | 30.10 | −2.41 | −38.22 |
NO2 | ||||||||||
Maximum | 114.33 | 109.81 | 91.51 | 105.22 | 74.34 | 61.92 | −12.42 | −16.71 | −43.30 | −41.15 |
Average | 52.57 | 53.17 | 47.55 | 51.10 | 34.54 | 33.78 | −0.76 | −2.20 | −17.32 | −33.89 |
Minimum | 16.53 | 21.33 | 14.66 | 17.51 | 12.52 | 12.55 | 0.03 | 0.24 | −4.96 | −28.31 |
CO | ||||||||||
Maximum | 2.26 | 1.97 | 1.55 | 1.93 | 1.61 | 1.27 | −0.34 | −21.12 | −0.66 | −34.08 |
Average | 1.17 | 0.89 | 0.93 | 1.00 | 0.74 | 0.84 | 0.1 | 13.51 | −0.16 | −15.72 |
Minimum | 0.63 | 0.44 | 0.37 | 0.48 | 0.35 | 0.59 | 0.24 | 68.57 | 0.11 | 22.92 |
O3 | ||||||||||
Maximum | 110.12 | 83.46 | 87.27 | 93.62 | 97.05 | 165.61 | 68.56 | 70.64 | 71.99 | 76.90 |
Average | 60.15 | 50.50 | 45.76 | 52.14 | 57.67 | 89.18 | 31.51 | 54.64 | 37.04 | 71.05 |
Minimum | 18.00 | 11.54 | 6.44 | 11.99 | 8.02 | 32.55 | 24.53 | 305.86 | 20.56 | 171.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasnain, A.; Hashmi, M.Z.; Bhatti, U.A.; Nadeem, B.; Wei, G.; Zha, Y.; Sheng, Y. Assessment of Air Pollution before, during and after the COVID-19 Pandemic Lockdown in Nanjing, China. Atmosphere 2021, 12, 743. https://doi.org/10.3390/atmos12060743
Hasnain A, Hashmi MZ, Bhatti UA, Nadeem B, Wei G, Zha Y, Sheng Y. Assessment of Air Pollution before, during and after the COVID-19 Pandemic Lockdown in Nanjing, China. Atmosphere. 2021; 12(6):743. https://doi.org/10.3390/atmos12060743
Chicago/Turabian StyleHasnain, Ahmad, Muhammad Zaffar Hashmi, Uzair Aslam Bhatti, Basit Nadeem, Geng Wei, Yong Zha, and Yehua Sheng. 2021. "Assessment of Air Pollution before, during and after the COVID-19 Pandemic Lockdown in Nanjing, China" Atmosphere 12, no. 6: 743. https://doi.org/10.3390/atmos12060743
APA StyleHasnain, A., Hashmi, M. Z., Bhatti, U. A., Nadeem, B., Wei, G., Zha, Y., & Sheng, Y. (2021). Assessment of Air Pollution before, during and after the COVID-19 Pandemic Lockdown in Nanjing, China. Atmosphere, 12(6), 743. https://doi.org/10.3390/atmos12060743