Quantifying the Impacts of COVID-19 Lockdown and Spring Festival on Air Quality over Yangtze River Delta Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Meteorology Data
3. Results
3.1. NO2
3.2. PM2.5
3.3. O3
3.4. Spring Festival and Air Quality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Coronavirus Disease (COVID-19) Pandemic. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 6 May 2020).
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Bio. Med. Atenei Parm. 2020, 91, 157. [Google Scholar]
- WHO Coronavirus Disease (COVID-19) Pandemic. 2020. Available online: https://covid19.who.int (accessed on 14 April 2021).
- Sahoo, P.K.; Mangla, S.; Pathak, A.K.; Salãmao, G.N.; Sarkar, D. Pre-to-post lockdown impact on air quality and the role of environmental factors in spreading the COVID-19 cases-a study from a worst-hit state of India. Int. J. Biometeorol. 2021, 65, 205–222. [Google Scholar] [CrossRef]
- Tanvir, A.; Javed, Z.; Jian, Z.; Zhang, S.; Bilal, M.; Xue, R.; Wang, S.; Bin, Z. Ground-Based MAX-DOAS Observations of Tropospheric NO2 and HCHO During COVID-19 Lockdown and Spring Festival Over Shanghai, China. Remote Sens. 2021, 13, 488. [Google Scholar] [CrossRef]
- Javed, Z.; Wang, Y.; Xie, M.; Tanvir, A.; Rehman, A.; Ji, X.; Xing, C.; Shakoor, A.; Liu, C. Investigating the Impacts of the COVID-19 Lockdown on Trace Gases Using Ground-Based MAX-DOAS Observations in Nanjing, China. Remote Sens. 2020, 12, 3939. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; de Leeuw, G. The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Liu, C.; Khokhar, M.F.; Tan, W.; Liu, H.; Xing, C.; Ji, X.; Tanvir, A.; Hong, Q.; Sandhu, O.; et al. Ground-based MAX-DOAS observations of CHOCHO and HCHO in Beijing and Baoding, China. Remote Sens. 2019, 11, 1524. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhu, S.; An, J.; Zhou, M.; Wang, H.; Yan, R.; Qiao, L.; Tian, X.; Shen, L.; Huang, L.; et al. Evaluation of the effect of regional joint-control measures on changing photochemical transformation: A comprehensive study of the optimization scenario analysis. Atmos. Chem. Phys. 2019, 19, 9037–9060. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J. The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet Sci. 1979, 7, 443–472. [Google Scholar] [CrossRef]
- Crutzen, P.J. The influence of nitrogen oxides on the atmospheric ozone content. Q. J. R. Meteorol. Soc. 1970, 96, 320–325. [Google Scholar] [CrossRef]
- Jang, M.; Kamens, R.M. Characterization of secondary organic aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environ. Sci. Technol. 2001, 35, 3626–3639. [Google Scholar] [CrossRef]
- Javed, Z.; Liu, C.; Ullah, K.; Tan, W.; Xing, C.; Liu, H. Investigating the effect of different meteorological conditions on MAX-DOAS observations of NO2 and CHOCHO in Hefei, China. Atmosphere 2019, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Delmas, R.; Serça, D.; Jambert, C. Global inventory of NOx sources. Nutr. Cycl. Agroecosyst. 1997, 48, 51–60. [Google Scholar] [CrossRef]
- Beirle, S.; Boersma, K.F.; Platt, U.; Lawrence, M.G.; Wagner, T. Megacity emissions and lifetimes of nitrogen oxides probed from space. Science 2011, 333, 1737–1739. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhao, C.; Li, Y.; Wu, X.; Zhang, K.; Gao, J.; Qiao, Q.; Ren, Y.; Zhang, X.; Chai, F. Spatial and temporal distribution of NO2 and SO2 in Inner Mongolia urban agglomeration obtained from satellite remote sensing and ground observations. Atmos. Environ. 2018. [Google Scholar] [CrossRef] [Green Version]
- Pui, D.Y.H.; Chen, S.C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Liu, H.; He, K. Traffic optimization: A new way for air pollution control in China’s Urban Areas. Environ. Sci. Technol. 2012, 46, 5660–5661. [Google Scholar]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- National Bureau of Statistics of China (NBSC). Available online: http://www.stats.gov.cn/tjsj/pcsj/rkpc/decrkpc/ (accessed on 20 May 2021).
- Ali, S.M.; Malik, F.; Anjum, M.S.; Siddiqui, G.F.; Anwar, M.N.; Lam, S.S.; Nizami, A.S.; Khokhar, M.F. Exploring the linkage between PM2.5 levels and COVID-19 spread and its implications for socio-economic circles. Environ. Res. 2021, 193, 110421. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yu, H.; Su, X.; Liu, S.; Li, Y.; Pan, Y.; Sun, J.-H. Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks. Atmos. Res. 2016, 182, 176–188. [Google Scholar] [CrossRef]
- Tang, M.; Ji, D.-S.; Gao, W.-K.; Yu, Z.-W.; Chen, K.; Cao, W. Characteristics of air quality in Tianjin during the Spring Festival period of 2015. Atmos. Ocean Sci. Lett. 2016, 9, 15–21. [Google Scholar] [CrossRef]
- Wang, C.; Huang, X.-F.; Zhu, Q.; Cao, L.-M.; Zhang, B.; He, L.-Y. Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival. Atmos. Chem. Phys. 2017, 17, 9103–9114. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Wang, D.; Fu, Q.; Qiao, L.; Wang, H.; Li, L.; Sun, W.; Li, Q.; Wang, L.; Yang, X. The effects of firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a Chinese megacity. Environ. Int. 2019, 126, 96–106. [Google Scholar] [CrossRef] [PubMed]
Parameters | Hangzhou | Hefei | Nanjing | Shanghai | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2018 | 2019 | 2020 | 2021 | 2018 | 2019 | 2020 | 2021 | 2018 | 2019 | 2020 | 2021 | 2018 | 2019 | 2020 | 2021 |
Mean Temperature (˚C) | 10.17 | 10.40 | 11.18 | 11.48 | 8.89 | 8.50 | 9.08 | 9.50 | 8.74 | 9.25 | 10.1 | 10.16 | 9.31 | 9.86 | 10.84 | 10.35 |
Mean Wind speed (m/s) | 8.62 | 7.60 | 7.97 | 8.06 | 7.80 | 8.96 | 9.51 | 9.80 | 9.71 | 8.45 | 9.26 | 9.86 | 9.68 | 8.92 | 9.40 | 8.91 |
Mean Relative Humidity (%) | 71.41 | 77.33 | 72.16 | 68.60 | 72.09 | 78.28 | 78.90 | 70.37 | 78.23 | 73.32 | 80.90 | 71.23 | 70.15 | 75.18 | 71.13 | 71.15 |
Cities | Year | Level-1(% Change) | Level-2(% Change) |
---|---|---|---|
Shanghai | 2018 | −13 | −24 |
2019 | −41 | −15 | |
2020 | −47 | −35 | |
2021 | −34 | −27 | |
Nanjing | 2018 | −24 | −20 |
2019 | −35 | −12 | |
2020 | −51 | −23 | |
2021 | −41 | −25 | |
Hefei | 2018 | −20 | −19 |
2019 | −35 | −10 | |
2020 | −54 | −27 | |
2021 | −41 | −28 | |
Hangzhou | 2018 | −23 | −18 |
2019 | −40 | −43 | |
2020 | −66 | −13 | |
2021 | −44 | −22 |
Cities | Year | Level-1(% Change) | Level-2(% Change) |
---|---|---|---|
Shanghai | 2018 | −4 | −26 |
2019 | −30 | −09 | |
2020 | −36 | −52 | |
2021 | −27 | −10 | |
Nanjing | 2018 | −22 | −43 |
2019 | −26 | −31 | |
2020 | −40 | −50 | |
2021 | −10 | −21 | |
Hefei | 2018 | −23 | −48 |
2019 | −23 | −39 | |
2020 | −39 | −48 | |
2021 | −20 | −27 | |
Hangzhou | 2018 | −2 | −34 |
2019 | −21 | −31 | |
2020 | −33 | −42 | |
2021 | −23 | −39 |
Cities | Year | Level-1(% Change) | Level-2(% Change) |
---|---|---|---|
Shanghai | 2018 | 38 | 69 |
2019 | 26 | 71 | |
2020 | 45 | 60 | |
2021 | 41 | 50 | |
Nanjing | 2018 | 43 | 86 |
2019 | 60 | 130 | |
2020 | 77 | 95 | |
2021 | 43 | 60 | |
Hefei | 2018 | 46 | 80 |
2019 | 39 | 119 | |
2020 | 108 | 113 | |
2021 | 47 | 79 | |
Hangzhou | 2018 | 2 | 34 |
2019 | 21 | 31 | |
2020 | 33 | 42 | |
2021 | 23 | 39 |
Year | Pre-Spring Festival | Spring Festival | Post-Spring Festival |
---|---|---|---|
2019 | 28 January–3 February | 4 February–10 February | 11 February–17 February |
2020 | 18 January–24 January | 25 January–31 January | 1 February–7 February |
2021 | 4 February–10 February | 11 February–17 February | 18 February–24 February |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, Z.; Tanvir, A.; Wang, Y.; Waqas, A.; Xie, M.; Abbas, A.; Sandhu, O.; Liu, C. Quantifying the Impacts of COVID-19 Lockdown and Spring Festival on Air Quality over Yangtze River Delta Region. Atmosphere 2021, 12, 735. https://doi.org/10.3390/atmos12060735
Javed Z, Tanvir A, Wang Y, Waqas A, Xie M, Abbas A, Sandhu O, Liu C. Quantifying the Impacts of COVID-19 Lockdown and Spring Festival on Air Quality over Yangtze River Delta Region. Atmosphere. 2021; 12(6):735. https://doi.org/10.3390/atmos12060735
Chicago/Turabian StyleJaved, Zeeshan, Aimon Tanvir, Yuhang Wang, Ahmed Waqas, Mingjie Xie, Adnan Abbas, Osama Sandhu, and Cheng Liu. 2021. "Quantifying the Impacts of COVID-19 Lockdown and Spring Festival on Air Quality over Yangtze River Delta Region" Atmosphere 12, no. 6: 735. https://doi.org/10.3390/atmos12060735
APA StyleJaved, Z., Tanvir, A., Wang, Y., Waqas, A., Xie, M., Abbas, A., Sandhu, O., & Liu, C. (2021). Quantifying the Impacts of COVID-19 Lockdown and Spring Festival on Air Quality over Yangtze River Delta Region. Atmosphere, 12(6), 735. https://doi.org/10.3390/atmos12060735