Linking ECMWF 2 m Temperature Forecast Errors with Upper-Level Circulation Situation: A Case-Study for China
Abstract
:1. Introduction
2. Data and Methods
3. Temporal and Spatial Distribution Characteristics of the ECMWF 2 m Temperature Forecast Errors
4. Attribution Analysis of Positive 2 m Temperature Forecast Errors to Low-Level Circulation
5. Attribution Analysis of Negative 2 m Temperature Forecast Errors to Mid-Level Circulation
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorenz, E.N. Atmospheric predictability experiments with a large numerical model. Tellus 1982, 34, 505–513. [Google Scholar] [CrossRef]
- Simmons, A.J.; Hollingsworth, A. Some aspects of the improvement in skill of numerical weather prediction. Q. J. R. Meteorol. Soc. 2002, 128, 647–677. [Google Scholar] [CrossRef]
- Bednář, H.; Raidl, A.; Mikšovský, J. Recalculation of error growth models’ parameters for the ECMWF forecast system. Geosci. Model Dev. 2020. under discussion. [Google Scholar] [CrossRef]
- Mengaldo, G.; Wyszogrodzki, A.; Diamantakis, M.; Lock, S.; Francis, X. Current and emerging time-integration strategies in global numerical weather and climate prediction. Arch. Comput. Methods Eng. 2019, 26, 663–684. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Sabater, J.; Lawrence, H.; Albergelb, C.; Rosnaya, P.; Isaksen, L.; Mecklenburg, S.; Kerr, Y.; Drusch, M. Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System. Q. J. R. Meteorol. Soc. 2019, 145, 2524–2548. [Google Scholar] [CrossRef]
- Bannister, R.N. A review of operational methods of variational and ensemble-variational data assimilation. Q. J. R. Meteorol. Soc. 2017, 143, 607–633. [Google Scholar] [CrossRef] [Green Version]
- Buizza, R.; Miller, M.; Palmer, T.N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 1999, 125, 2887–2908. [Google Scholar] [CrossRef]
- Charron, M.; Pellerin, G.; Spacek, L.; Houtekamer, P.L.; Gagnon, N.; Mitchell, H.L.; Michelin, L. Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Weather Rev. 2010, 138, 1877–1901. [Google Scholar] [CrossRef]
- Jung, T. Systematic errors of the atmospheric circulation in the ECMWF forecasting system. Q. J. R. Meteorol. Soc. 2005, 131, 1045–1073. [Google Scholar] [CrossRef]
- Jung, T.; Tompkins, A.; Rodwell, M. Systematic errors in the ECMWF forecasting system. ECMWF Shinfield Park Read. Berks. Rg2ax 2003, 107, 96. [Google Scholar]
- Heckley, W.A. Systematic errors of the ECMWF operational forecasting model in tropical regions. Q. J. R. Meteorol. Soc 1985, 111, 709–738. [Google Scholar] [CrossRef]
- Jung, T.; Tompkins, A.M.; Rodwell, M.J. Some aspects of systematic error in the ECMWF model. Atmos. Sci. Lett. 2005, 6, 133–139. [Google Scholar] [CrossRef]
- Kamga, A.F.; Fongang, S.; Viltard, A. Systematic errors of the ECMWF operational model over tropical Africa. Mon. Weather Rev. 2000, 128, 1949–1959. [Google Scholar] [CrossRef]
- Li, B.P.; Zhi, X.F. Comparative Study of Four Correction Schemes of the ECMWF Surface Temperature Forecasts. Meteorol. Mon. 2012, 38, 897–902. (In Chinese) [Google Scholar]
- Zhao, G.R.; Li, Y.P.; Yan, Y.X. Analysis of the causes of temperature forecast errors for the four counties of Haibei State in Qinghai Province. Qinghai Sci. Technol. 2020, 27, 65–69. (In Chinese) [Google Scholar]
- Li, G.C.; Lian, Z.L.; Zhao, Y.C.; Niu, C.Y. Temperature forecast verification and its controls in Shijiazhuang Hebei province. J. Meteorol. Environ. 2009, 25, 15–18. (In Chinese) [Google Scholar]
- Yu, J.H.; Tang, J.X.; Dai, Y.H.; Yu, B.Y. Analyses in errors and their causes of Chinese typhoon track operational forecasts. Meteorol. Mon. 2012, 38, 695–700. (In Chinese) [Google Scholar]
- Chang, L.; Yu, J.H. Analysis of tropical cyclone motion velocity anomalies over the western North Pacific and their forecast error. Acta Atmos. Sci. 2017, 40, 71–80. (In Chinese) [Google Scholar]
- Wang, W.B.; Gao, X.M.; Yang, M.; Wang, S.J.; Wang, S.Y. Analysis on the causes and forecast error of a local short-time heavy rainfall. J. Mar. Meteorol. 2019, 39, 142–150. (In Chinese) [Google Scholar]
- Li, R.P.; Guo, X.M.; Li, Z.C. Analysis and test about possible reasons for temperature change in Shanxi province. Meteorol. Environ. Sci. 2015, 38, 77–81. (In Chinese) [Google Scholar] [CrossRef]
- Weyn, J.A.; Durran, D.R.; Caruana, R.; Cresswell-Clay, N. Sub-seasonal forecasting with a large ensemble of deep-learning weather prediction models. arXiv 2021, arXiv:2102.05107. [Google Scholar]
- Buckingham, C.; Marchok, T.; Ginis, I.; Rothstein, L.; Rowe, D. Short-and medium-range prediction of tropical and transitioning cyclone tracks within the NCEP Global Ensemble Forecasting System. Weather. Forecast. 2010, 25, 1736–1754. [Google Scholar] [CrossRef]
- Aminyavari, S.; Saghafian, B.; Delavar, M. Evaluation of TIGGE ensemble forecasts of precipitation in distinct climate regions in Iran. Adv. Atmos. Sci. 2018, 35, 457–468. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Feng, G.L.; Huang, J.P.; Chou, J.F. Predictability-based extended-range ensemble prediction method and numerical experiments. Acta Phys. Sin. 2012, 61, 199203. (In Chinese) [Google Scholar]
- Gu, R.Y.; Song, G.Y.; Zhang, G.; Wang, D.M.; Lan, W.U. Research on the integrating methods of numerical weather prediction in inner Mongolia. J. Chengdu Univ. Inf. Technol. 2011, 26, 451–454. (In Chinese) [Google Scholar]
- Zhi, X.F.; Ji, X.D.; Zhang, J.; Zhang, L.; Bai, Y.Q.; Lin, C.Z. Multimodel ensemble forecasts of surface air temperature and precipitation using TIGGE datasets. J. Atmos. Sci. 2013, 36, 257–266. (In Chinese) [Google Scholar]
- Wei, X.M.; Sun, X.G.; Sun, J.L.; Yin, J.F.; Sun, J.; Liu, C.J. Preliminary study of a modified variant weight technique for improving multi-model ensemble forecasting accuracy. J. Meteorol. Soc. Jpn. 2021. under review. [Google Scholar]
- Durai, V.R.; Bhradwaj, R. Evaluation of statistical bias correction methods for numerical weather prediction model forecasts of maximum and minimum temperatures. Nat. Hazards 2014, 73, 1229–1254. [Google Scholar] [CrossRef]
- Alidoost, F.; Stein, A.; Su, Z.; Sharifi, A. Three novel copula-based bias correction methods for daily ecmwf air temperature data. Hydrol. Earth Syst. Sci. 2017. under discussion. [Google Scholar]
- Xue, C.B.; Chen, X.; Zhang, Y.; Zheng, J.; Ma, X.H.; Zhang, Y.B.; Pan, L.J. Bias correction for the 2m temperature forecast of ECMWF high resolution model. Meteorology 2019, 45, 831–842. (In Chinese) [Google Scholar]
- Zhang, C.; Li, N.; Jia, J. Test of ECMWF refined net numerical 2m temperature forecast data in temperature Forecasting in Urumqi. Meteorol. Deserts Oasis 2015, 9, 62–68. (In Chinese) [Google Scholar]
- Xie, H.; Wu, L.; Xie, W.; Lin, Q.; Liu, M.; Lin, Y. Improving ECMWF short-term intensive rainfall forecasts using generative adversarial nets and deep belief networks. Atmos. Res. 2020, 249, 105281. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, X.; Huang, Y.; Jin, J. A revised forecast method of ECMWF precipitation based on CNN feature extraction. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/658/1/012025 (accessed on 2 April 2021).
- Yang, Y.P.; Liu, L.Y.; Ni, Z.P.; Gao, L. Evaluation on ECMWF typhoon track forecast that affects Zhejiang province under different synoptic situation. Ocean Forecast 2019, 36, 70–78. (In Chinese) [Google Scholar]
- Niu, R.Y. The performance verification of the Medium-Range Forecast for T639 and ECMWF and Japan Model from December 2008 to February 2009. Meteorol. Mon. 2009, 35, 112–119. (In Chinese) [Google Scholar]
- Zhang, N.N.; Huang, G.; Wu, M.L.; Liang, H.; Sheng, Y.; Liu, G.Y. Contrastive verification of three numerical prediction products in the northeast of China in 2010. J. Meteorol. Environ. 2012, 28, 28–34. (In Chinese) [Google Scholar]
- Zhang, Y.M. Comparative analysis of different numerical forecast products and their effect verification. Sci. Technol. Innov. 2021, 8, 5–6. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Sun, X.; Liang, Z.; Sun, J.; Xiong, Z. Linking ECMWF 2 m Temperature Forecast Errors with Upper-Level Circulation Situation: A Case-Study for China. Atmosphere 2021, 12, 725. https://doi.org/10.3390/atmos12060725
Wei X, Sun X, Liang Z, Sun J, Xiong Z. Linking ECMWF 2 m Temperature Forecast Errors with Upper-Level Circulation Situation: A Case-Study for China. Atmosphere. 2021; 12(6):725. https://doi.org/10.3390/atmos12060725
Chicago/Turabian StyleWei, Xiaomin, Xiaogong Sun, Zhaoming Liang, Jilin Sun, and Zhaohui Xiong. 2021. "Linking ECMWF 2 m Temperature Forecast Errors with Upper-Level Circulation Situation: A Case-Study for China" Atmosphere 12, no. 6: 725. https://doi.org/10.3390/atmos12060725
APA StyleWei, X., Sun, X., Liang, Z., Sun, J., & Xiong, Z. (2021). Linking ECMWF 2 m Temperature Forecast Errors with Upper-Level Circulation Situation: A Case-Study for China. Atmosphere, 12(6), 725. https://doi.org/10.3390/atmos12060725