Development of a Manometric Monitoring Method for Early Detection of Air Microbiological Contamination in the Bloodstream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Microorganisms
2.2. Isolation and Identification of Microorganism
2.3. Preparation of Broth Culture
2.4. Device for Detecting Pressure in Blood Culture Vials
2.5. Selection and Evaluation of Different Culture Media for the Detection of Microorganisms
2.6. Determination of Maximum and Minimum Pressure in Blood Culture Flasks Containing Selected Culture Medium and Determination of Statistical Time-to-Positivity (Sttp) and Time-to-Positivity (TTP)
2.7. Analysis of the Internal Pressure Variation Profile in Blood Culture Flasks According to Different Groups of Microorganisms
2.8. Statistical Analysis
3. Results and Discussion
3.1. Performance and Selection of Different Culture Media
3.2. Definition of the Maximum and Minimum Pressure for the Detection Time of Microbial Activity
3.3. Profile of Internal Pressure Variation in Blood Culture Flasks According to Different Groups of Microorganisms X Time
3.4. Determination of Statistical Time-to-Positivity (STTP) and Time-to-Positivity (TTP)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deisz, R.; Rademacher, S.; Gilger, K.; Jegen, R.; Sauerzapfe, B.; Fitzner, C.; Stoppe, C.; Benstoem, C.; Marx, G. Additional Telemedicine Rounds as a Successful Performance-Improvement Strategy for Sepsis Management: Observational Multicenter Study. J. Med. Internet Res. 2019, 21, e11161. [Google Scholar] [CrossRef] [PubMed]
- Tillmann, B.; Wunsch, H. Epidemiology and Outcomes. Crit. Care Clin. 2018, 34, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, G.O.; Castell, C.D. Epidemiologia das infecções graves nas unidades de terapia intensiva latino-americanas. Rev. Bras. Ter. Intensiva 2016, 28, 261–263. [Google Scholar]
- World Health Organization. Sepsis. Available online: https://www.who.int/news-room/fact-sheets/detail/sepsis (accessed on 28 April 2021).
- Quintano Neira, R.A.; Hamacher, S.; Japiassú, A.M. Epidemiology of sepsis in Brazil: Incidence, lethality, costs, and other indicators for Brazilian Unified Health System hospitalizations from 2006 to 2015. PLoS ONE 2018, 13, e0195873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckman, S.A.; Turnbull, I.R.; Mazuski, J.E. Empiric Antibiotics for Sepsis. Surg. Infect. 2018, 19, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouks, Y.; Samueloff, O.; Levin, I.; Many, A.; Amit, S.; Cohen, A. Assessing the effectiveness of empiric antimicrobial regimens in cases of septic/infected abortions. Am. J. Emerg. Med. 2020, 38, 1123–1128. [Google Scholar] [CrossRef]
- Robakowska, M.; Bronk, M.; Tyrańska-Fobke, A.; Ślęzak, D.; Kraszewski, J.; Balwicki, Ł. Patient Safety Related to Microbiological Contamination of the Environment of a Multi-Profile Clinical Hospital. Int. J. Environ. Res. Public Health 2021, 18, 3844. [Google Scholar] [CrossRef]
- Jankowiak, E.; Kubera, Ł.; Małecka-Adamowicz, M.; Dembowska, E. Microbiological air quality in pharmacies and an antibiotic resistance profile of staphylococci species. Aerobiologia 2020, 36, 551–563. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Opota, O.; Croxatto, A.; Prod’hom, G.; Greub, G. Blood culture-based diagnosis of bacteraemia: State of the art. Clin. Microbiol. Infect. 2015, 21, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Izquierdo, M.; Benavente-Fernández, A.; López-Gómez, J.; Láinez-Ramos-Bossini, A.J.; Rodríguez-Camacho, M.; Valero-Ubierna, M.D.C.; Martín-delosReyes, L.M.; Jiménez-Mejías, E.; Moreno-Roldán, E.; Lardelli-Claret, P.; et al. Prevalence of Multi-Resistant Microorganisms and Antibiotic Stewardship among Hospitalized Patients Living in Residential Care Homes in Spain: A Cross-Sectional Study. Antibiotics 2020, 9, 324. [Google Scholar] [CrossRef]
- Tassinari, M.; Zannoli, S.; Farabegoli, P.; Pedna, M.F.; Pierro, A.; Mastroianni, A.; Fontan, R.; Luongo, L.; Sarnataro, G.; Menegatti, E.; et al. Rapid diagnosis of bloodstream infections in the critically ill: Evaluation of the broad-range PCR/ESI-MS technology. PLoS ONE 2018, 13, e0197436. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Basu, G. A hospital based study on clinico microbiological profile of neonatal septicemia. Asian J. Med. Sci. 2018, 9, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Timsit, J.-F.; Ruppé, E.; Barbier, F.; Tabah, A.; Bassetti, M. Bloodstream infections in critically ill patients: An expert statement. Intensive Care Med. 2020, 46, 266–284. [Google Scholar] [CrossRef]
- Chung, Y.; Kim, I.H.; Han, M.; Kim, H.S.; Kim, H.S.; Song, W.; Kim, J.S. A comparative evaluation of BACT/ALERT FA PLUS and FN PLUS blood culture bottles and BD BACTEC Plus Aerobic and Anaerobic blood culture bottles for antimicrobial neutralization. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2229–2233. [Google Scholar] [CrossRef]
- Ning, Y.; Hu, R.; Yao, G.; Bo, S. Time to positivity of blood culture and its prognostic value in bloodstream infection. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 619–624. [Google Scholar] [CrossRef]
- Somily, A.M.; Habib, H.A.; Torchyan, A.A.; Sayyed, S.B.; Absar, M.; Al-Aqeel, R.; Binkhamis, A.K. Time-to-detection of bacteria and yeast with the BACTEC FX versus BacT/Alert Virtuo blood culture systems. Ann. Saudi Med. 2018, 38, 194–199. [Google Scholar] [CrossRef]
- Atkinson-Dunn, R.; Michael Dunne, W., Jr. Conventional Blood Culture Methods. In The Dark Art of Blood Cultures; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 21–38. [Google Scholar] [CrossRef]
- Li, Z.; Liu, S.; Chen, H.; Zhang, X.; Ling, Y.; Zhang, N.; Hou, T. Comparative evaluation of BACTEC FX, BacT/ALERT 3D, and BacT/ALERT VIRTUO-automated blood culture systems using simulated blood cultures. Acta Clin. Belg. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Ahmad, A.; Iram, S.; Hussain, S.; Yusuf, N.W. Diagnosis of paediatric sepsis by automated blood culture system and conventional blood culture. J. Pak. Med. Assoc. 2017, 67, 192–195. [Google Scholar] [PubMed]
- Wilson, M.L.; Weinstein, M.P.; Reller, L.B. Commercial Blood Culture Systems and Methods. In Manual of Commercial Methods in Clinical Microbiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 11–20. [Google Scholar] [CrossRef]
- Palmer, H.R.; Palavecino, E.L.; Johnson, J.W.; Ohl, C.A.; Williamson, J.C. Clinical and microbiological implications of time-to-positivity of blood cultures in patients with Gram-negative bacilli bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Paoli, C.J.; Reynolds, M.A.; Sinha, M.; Gitlin, M.; Crouser, E. Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level. Crit. Care Med. 2018, 46, 1889–1897. [Google Scholar] [CrossRef]
- Blaschke, A.J.; Hersh, A.L.; Beekmann, S.E.; Ince, D.; Polgreen, P.M.; Hanson, K.E. Unmet diagnostic needs in infectious disease. Diagn. Microbiol. Infect. Dis. 2015, 81, 57–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caliendo, A.M.; Gilbert, D.N.; Ginocchio, C.C.; Hanson, K.E.; May, L.; Quinn, T.C.; Tenover, F.C.; Alland, D.; Blaschke, A.J.; Bonomo, R.A.; et al. Better tests, better care: Improved diagnostics for infectious diseases. Clin. Infect. Dis. 2013, 57 (Suppl. S3), S139–S170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocincová, A.S.; Nagl, S.; Arain, S.; Krause, C.; Borisov, S.M.; Arnold, M.; Wolfbeis, O.S. Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol. Bioeng. 2008, 100, 430–438. [Google Scholar] [CrossRef]
- Lazcka, O.; Del Campo, F.J.; Muñoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef]
- Menchinelli, G.; Liotti, F.M.; Fiori, B.; De Angelis, G.; D’Inzeo, T.; Giordano, L.; Posteraro, B.; Sabbatucci, M.; Sanguinetti, M.; Spanu, T. In vitro Evaluation of BACT/ALERT® VIRTUO®, BACT/ALERT 3D®, and BACTEC™ FX Automated Blood Culture Systems for Detection of Microbial Pathogens Using Simulated Human Blood Samples. Front. Microbiol. 2019, 10, 221. [Google Scholar] [CrossRef]
- Dreyer, A.W.; Ismail, N.A.; Nkosi, D.; Lindeque, K.; Matthews, M.; van Zyl, D.G.; Hoosen, A.A. Comparison of the VersaTREK blood culture system against the Bactec9240 system in patients with suspected bloodstream infections. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, P.; Zhou, M.; Kudinha, T.; Xie, X.; Du, J.; Song, H.; Zhang, L.; Ma, X.; Weng, L.; Chai, W.; et al. Clinical Performance Evaluation of VersaTrek 528 Blood Culture System in a Chinese Tertiary Hospital. Front. Microbiol. 2018, 9, 2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, L.P.; Pimentel, J.D.; Tibbetts, R.J.; Martin, R.; Hensley, R.; Meier, F.A. Comparison of time to positivity of the VersaTREK® REDOX 80-mL and the REDOX EZ draw 40-mL blood culture bottles for common bacterial bloodstream pathogens. Diagn. Microbiol. Infect. Dis. 2011, 71, 101–105. [Google Scholar] [CrossRef]
- Baykara, N.; Akalın, H.; Arslantaş, M.K.; Hancı, V.; Çağlayan, Ç.; Kahveci, F.; Demirağ, K.; Baydemir, C.; Ünal, N. Epidemiology of sepsis in intensive care units in Turkey: A multicenter, point-prevalence study. Crit. Care 2018, 22, 93. [Google Scholar] [CrossRef] [Green Version]
- Yusef, D.; Shalakhti, T.; Awad, S.; Algharaibeh, H.; Khasawneh, W. Clinical characteristics and epidemiology of sepsis in the neonatal intensive care unit in the era of multi-drug resistant organisms: A retrospective review. Pediatr. Neonatol. 2018, 59, 35–41. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Report on the Epidemiology and Burden of Sepsis: Current Evidence, Identifying Gaps and Future Directions; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Hansen, G.T. Laboratory Blood Cultures: Past, Present, and Future. Clin. Microbiol. Newsl. 2016, 38, 119–128. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Lukashenko, S.S.; Zakharov, S.V.; Voloshina, A.D.; Zhiltsova, E.P.; Zobov, V.V.; Souto, E.B.; Zakharova, L.Y. Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs. Colloids Surf. B Biointerfaces 2015, 127, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Reimer, L.G.; Reller, L.B.; Wang, W.L.; Mirrett, S. Controlled evaluation of trypticase soy broth with and without gelatin and yeast extract in the detection of bacteremia and fungemia. Diagn. Microbiol. Infect. Dis. 1987, 8, 19–24. [Google Scholar] [CrossRef]
- Ganguli, L.A.; Turton, L.J.; Tillotson, G.S. Evaluation of Fastidious Anaerobe Broth as a blood culture medium. J. Clin. Pathol. 1982, 35, 458–461. [Google Scholar] [CrossRef]
- Riley, J.A.; Heiter, B.J.; Bourbeau, P.P. Comparison of recovery of blood culture isolates from two BacT/ALERT FAN aerobic blood culture bottles with recovery from one FAN aerobic bottle and one FAN anaerobic bottle. J. Clin. Microbiol. 2003, 41, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoji, K.; Komuro, H.; Watanabe, Y.; Miyairi, I. The utility of anaerobic blood culture in detecting facultative anaerobic bacteremia in children. Diagn. Microbiol. Infect. Dis. 2013, 76, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Camel, T.d.O.; Filgueiras, C.A.L. A importância da lei de Gay-Lussac para a classificação dos compostos orgânicos. Química Nova 2013, 36, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Kast, W.; Hohenthanner, C.R. Mass transfer within the gas-phase of porous media. Int. J. Heat Mass Transf. 2000, 43, 807–823. [Google Scholar] [CrossRef]
- Yeon, J.-W.; Jung, S.-H. Effects of temperature and solution composition on evaporation of iodine as a part of estimating volatility of iodine under gamma irradiation. Nucl. Eng. Technol. 2017, 49, 1689–1695. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Petropoulos, J.H.; Havredaki, V.I. On the fundamental concepts underlying Henry-law adsorption and adsorbed gas transport in porous solids. J. Chem. Soc. Faraday Trans. 1986, 82, 2531–2545. [Google Scholar] [CrossRef]
- Jawan, R.; Abbasiliasi, S.; Tan, J.S.; Mustafa, S.; Halim, M.; Ariff, A.B. Influence of Culture Conditions and Medium Compositions on the Production of Bacteriocin-Like Inhibitory Substances by Lactococcus lactis Gh1. Microorganisms 2020, 8, 1454. [Google Scholar] [CrossRef]
- Ladygina, N.; Dedyukhina, E.G.; Vainshtein, M.B. A review on microbial synthesis of hydrocarbons. Process. Biochem. 2006, 41, 1001–1014. [Google Scholar] [CrossRef]
- Bouvet, O.M.M.; Lenormand, P.; Ageron, E.; Grimont, P.A.D. Taxonomic diversity of anaerobic glycerol dissimilation in the Enterobacteriaceae. Res. Microbiol. 1995, 146, 279–290. [Google Scholar] [CrossRef]
- Freude, C.; Blaser, M. Carbon Isotope Fractionation during Catabolism and Anabolism in Acetogenic Bacteria Growing on Different Substrates. Appl. Environ. Microbiol. 2016, 82, 2728–2737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qadri, S.M.; Carr, D.L.; Narayanan, R.; Ottman, J. Accuracy of a rapid carbohydrate oxidation microtube method for identification of nonfermentative gram-negative bacilli. J. Clin. Microbiol. 1982, 15, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Kok, S.; Meijer, J.; van Loosdrecht, M.C.; Kleerebezem, R. Impact of dissolved hydrogen partial pressure on mixed culture fermentations. Appl. Microbiol. Biotechnol. 2013, 97, 2617–2625. [Google Scholar] [CrossRef]
- Temudo, M.F.; Kleerebezem, R.; van Loosdrecht, M. Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study. Biotechnol. Bioeng. 2007, 98, 69–79. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb. Cell Fact. 2018, 17, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bott, M. Anaerobic citrate metabolism and its regulation in enterobacteria. Arch. Microbiol. 1997, 167, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Song, W.; Cheng, J.; Liu, M.; Zhang, C.; Cen, K. Improvement of fermentative hydrogen production using genetically modified Enterobacter aerogenes. Int. J. Hydrog. Energy 2017, 42, 3676–3681. [Google Scholar] [CrossRef]
- Yazdani, S.S.; Gonzalez, R. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 2007, 18, 213–219. [Google Scholar] [CrossRef]
- Barbirato, F.; Soucaille, P.; Bories, A. Physiologic Mechanisms Involved in Accumulation of 3-Hydroxypropionaldehyde during Fermentation of Glycerol by Enterobacter agglomerans. Appl. Environ. Microbiol. 1996, 62, 4405–4409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Converti, A.; Perego, P. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 2002, 59, 303–309. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Buelna, G.; Verma, M. Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum. Bioresour. Technol. 2015, 193, 297–306. [Google Scholar] [CrossRef]
- Post, K.W. Overview of Bacteria. In Diseases of Swine; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 743–748. [Google Scholar] [CrossRef]
- Ferreira, M.T.; Manso, A.S.; Gaspar, P.; Pinho, M.G.; Neves, A.R. Effect of oxygen on glucose metabolism: Utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLoS ONE 2013, 8, e58277. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y. Lactic acid fermentation is the main aerobic metabolic pathway in Enterococcus faecalis metabolizing a high concentration of glycerol. Appl. Microbiol. Biotechnol. 2018, 102, 10183–10192. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y. L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: Cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system. Appl. Environ. Microbiol. 2015, 81, 2082–2089. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Poyart, C.; Trieu-Cuot, P.; Lamberet, G.; Gruss, A.; Gaudu, P. Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence. Mol. Microbiol. 2005, 56, 525–534. [Google Scholar] [CrossRef] [PubMed]
- van Schie, B.J.; Hellingwerf, K.J.; van Dijken, J.P.; Elferink, M.G.; van Dijl, J.M.; Kuenen, J.G.; Konings, W.N. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi). J. Bacteriol. 1985, 163, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Zhou, M.; Chen, Y.; Luo, J.; Hu, Y. Carbon selection for nitrogen degradation pathway by Stenotrophomonas maltophilia: Based on the balances of nitrogen, carbon and electron. Bioresour. Technol. 2019, 294, 122114. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; de Breij, A.; Adams, M.D.; Cerqueira, G.M.; Mocali, S.; Galardini, M.; Nibbering, P.H.; Earl, A.M.; Ward, D.V.; Paterson, D.L.; et al. The success of acinetobacter species; genetic, metabolic and virulence attributes. PLoS ONE 2012, 7, e46984. [Google Scholar] [CrossRef]
- Su, W.; Zhang, L.; Li, D.; Zhan, G.; Qian, J.; Tao, Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol. Bioeng. 2012, 109, 2904–2910. [Google Scholar] [CrossRef] [PubMed]
- Puerta-Alcalde, P.; Cardozo, C.; Suárez-Lledó, M.; Rodríguez-Núñez, O.; Morata, L.; Fehér, C.; Marco, F.; Del Río, A.; Martínez, J.A.; Mensa, J.; et al. Current time-to-positivity of blood cultures in febrile neutropenia: A tool to be used in stewardship de-escalation strategies. Clin. Microbiol. Infect. 2019, 25, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.L.; Sayles, H.R.; Fey, P.D.; Rupp, M.E. Effect of Clinical Variables on the Volume of Blood Collected for Blood Cultures in an Adult Patient Population. Infect. Control. Hosp. Epidemiol. 2017, 38, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Pongsachareonnont, P.; Honglertnapakul, W.; Chatsuwan, T. Comparison of methods for identifying causative bacterial microorganisms in presumed acute endophthalmitis: Conventional culture, blood culture, and PCR. BMC Infect. Dis. 2017, 17, 165. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbacher, J.; Kuhn, S.O.; Vollmer, M.; Scheer, C.; Fuchs, C.; Rehberg, S.; Balau, V.; Hahnenkamp, K.; Bohnert, J.A.; Gründling, M. On-site blood culture incubation shortens the time to knowledge of positivity and microbiological results in septic patients. PLoS ONE 2019, 14, e0225999. [Google Scholar] [CrossRef] [Green Version]
- Guerti, K.; Devos, H.; Ieven, M.M.; Mahieu, L.M. Time to positivity of neonatal blood cultures: Fast and furious? J. Med. Microbiol. 2011, 60, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, S.M. Time to Positivity and Antibiotic Sensitivity of Neonatal Blood Cultures. J. Glob. Infect. Dis. 2017, 9, 102–107. [Google Scholar] [CrossRef]
- Pence, M.A.; McElvania TeKippe, E.; Burnham, C.A. Diagnostic assays for identification of microorganisms and antimicrobial resistance determinants directly from positive blood culture broth. Clin. Lab. Med. 2013, 33, 651–684. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, J.; Yu, Q.; Li, Q.; Yi, Q.; Luo, S.; Li, Y.; Zhang, G.; Tian, X.; Cheng, D.; et al. Prognostic role of time to positivity of blood culture in children with Pseudomonas aeruginosa bacteremia. BMC Infect. Dis. 2020, 20, 665. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Zhang, G.; Ma, H.; Wu, Y.; Yi, Q.; Jiang, L.; Wan, J.; Suo, F.; Luo, Z. Time to positivity of blood culture is a risk factor for clinical outcomes in Staphylococcus aureus bacteremia children: A retrospective study. BMC Infect. Dis. 2019, 19, 437. [Google Scholar] [CrossRef] [PubMed]
- Peralta, G.; Rodríguez-Lera, M.J.; Garrido, J.C.; Ansorena, L.; Roiz, M.P. Time to positivity in blood cultures of adults with Streptococcus pneumoniae bacteremia. BMC Infect. Dis. 2006, 6, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, P.C.; Lee, C.C.; Li, C.W.; Li, M.C.; Ko, W.C.; Lee, N.Y. Time-to-positivity of blood culture: An independent prognostic factor of monomicrobial Pseudomonas aeruginosa bacteremia. J. Microbiol. Immunol. Infect. 2017, 50, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
i-ATCC | CI-1 | CI-2 |
---|---|---|
Gram positive cocci | ||
Enterococcus faecalis ATCC 29212 | Enterococcus spp. | Enterococcus spp. |
Staphylococcus aureus ATCC 25923 | Staphylococcus aureus | Staphylococcus aureus |
Streptococcus agalactiae ATCC 13813 | Streptococcus agalactiae | Streptococcus agalactiae |
Fermentative gram-negative bacilli | ||
Citrobacter freundii ATCC 8090 | Citrobacter freundii | Citrobacter freundii |
Enterobacter cloacae ATCC 13047 | Enterobacter cloacae | Enterobacter cloacae |
Escherichia coli ATCC25922 | Escherichia coli | Escherichia coli |
Klebsiella pneumoniae ATCC 1705 | Klebsiella pneumoniae | Klebsiella pneumoniae |
Morganella morganii ATCC 25830 | Morganella morganii | Morganella morganii |
Proteus vulgaris ATCC 13315 | Proteus spp. | Proteus spp. |
Salmonella spp. ATCC 700623 | Salmonella spp. | Salmonella spp. |
Serratia marcescens ATCC 13880 | Serratia marcescens | Serratia marcescens |
Shigella sonnei ATCC 25931 | Shigella sonnei | Shigella sonnei |
Non-fermenting gram-negative bacilli | ||
Acinetobacter baumannii ATCC 19606 | Acinetobacter baumannii | Acinetobacter baumannii |
Pseudomonas aeruginosa ATCC 27863 | Pseudomonas aeruginosa | Pseudomonas aeruginosa |
Stenotrophomonas maltophilia ATCC 13637 | Stenotrophomonas maltophilia | Stenotrophomonas maltophilia |
Microorganisms | STTP (h) | TTP (h) |
---|---|---|
GPC | ||
Staphylococcus aureus | 3 | 13 |
Enterococcus faecalis | 7 | 12 |
Streptococcus agalactiae | 12 | 18 |
F-GNB | ||
Citrobacter freundii | 5 | 14 |
Enterobacter cloacae | 5 | 6 |
Escherichia coli | 4 | 9 |
Klebsiella pneumoniae | 4 | 7 |
Morganella morganii | 6 | 8 |
Proteus vulgaris | 4 | 8 |
Salmonella spp. | 4 | 5 |
Serratia marcescens | 6 | 7 |
NF-GNB | ||
Acinetobacter baumannii | 6 | 11 |
Pseudomonas aeruginosa | 9 | 21 |
Stenotrophomonas maltophilia | 10 | 15 |
Average | 6.07 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos-Neto, A.G.; Pinheiro, M.S.; dos Santos, M.C.; Alves, L.L.; Poderoso, R.R.S.; Cardoso, J.C.; Severino, P.; Souto, E.B.; de Albuquerque-Junior, R.L.C. Development of a Manometric Monitoring Method for Early Detection of Air Microbiological Contamination in the Bloodstream. Atmosphere 2021, 12, 702. https://doi.org/10.3390/atmos12060702
dos Santos-Neto AG, Pinheiro MS, dos Santos MC, Alves LL, Poderoso RRS, Cardoso JC, Severino P, Souto EB, de Albuquerque-Junior RLC. Development of a Manometric Monitoring Method for Early Detection of Air Microbiological Contamination in the Bloodstream. Atmosphere. 2021; 12(6):702. https://doi.org/10.3390/atmos12060702
Chicago/Turabian Styledos Santos-Neto, Agenor G., Malone S. Pinheiro, Monica C. dos Santos, Lumar L. Alves, Renata R. S. Poderoso, Juliana C. Cardoso, Patricia Severino, Eliana B. Souto, and Ricardo L. C. de Albuquerque-Junior. 2021. "Development of a Manometric Monitoring Method for Early Detection of Air Microbiological Contamination in the Bloodstream" Atmosphere 12, no. 6: 702. https://doi.org/10.3390/atmos12060702
APA Styledos Santos-Neto, A. G., Pinheiro, M. S., dos Santos, M. C., Alves, L. L., Poderoso, R. R. S., Cardoso, J. C., Severino, P., Souto, E. B., & de Albuquerque-Junior, R. L. C. (2021). Development of a Manometric Monitoring Method for Early Detection of Air Microbiological Contamination in the Bloodstream. Atmosphere, 12(6), 702. https://doi.org/10.3390/atmos12060702