The Impact of Aerosol Vertical Distribution on a Deep Convective Cloud
Abstract
:1. Introduction
2. Model and Case
3. Results
3.1. The Mechanisms for Aerosols Entering the Deep Convective Cloud
3.2. The Response of Precipitation and Microphysical Processes to the Vertical Profile of Aerosol Concentration
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhang, Q.; Ma, X.C.; Tie, X.; Huang, M.; Zhao, C. Vertical Distributions of Aerosols under Different Weather Conditions: Analysis of in-Situ Aircraft Measurements in Beijing, China. Atmos. Environ. 2009, 43, 5526–5535. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, C.; Zhang, Q.; Deng, Z.; Huang, M.; Ma, X.; Tie, X. Aircraft Study of Aerosol Vertical Distributions over Beijing and Their Optical Properties. Tellus Ser. B Chem. Phys. Meteorol. 2009, 61, 756–767. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Yin, Y.; Sun, Y.; Sun, Y.; Liu, W.; Han, Y. Seasonal and Vertical Variations in Aerosol Distribution over Shijiazhuang, China. Atmos. Environ. 2013, 81, 245–252. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Q.; Quan, J.; Gao, Y.; Huang, M.; Zhao, D.; Meng, J. Vertical Profiles of Aerosol Concentration in Beijing. Res. Environ. Sci. 2012, 25, 1215–1221. [Google Scholar]
- Bertschi, I.T.; Jaffe, D.A.; Jaeglé, L.; Price, H.U.; Dennison, J.B. PHOBEA/ITCT 2002 Airborne Observations of Transpacific Transport of Ozone, CO, Volatile Organic Compounds, and Aerosols to the Northeast Pacific: Impacts of Asian Anthropogenic and Siberian Boreal Fire Emissions. J. Geophys. Res. Atmos. 2004, 109, 1–16. [Google Scholar] [CrossRef]
- Bertschi, I.T.; Jaffe, D.A. Long-Range Transport of Ozone, Carbon Monoxide, and Aerosols to the NE Pacific Troposphere during the Summer of 2003: Observations of Smoke Plumes from Asian Boreal Fires. J. Geophys. Res. D Atmos. 2005, 110, 1–14. [Google Scholar] [CrossRef]
- Verma, S.; Boucher, O.; Venkataraman, C.; Reddy, M.S.; Müller, D.; Chazette, P.; Crouzille, B. Aerosol Lofting from Sea Breeze during the Indian Ocean Experiment. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Liang, Q.; Jaeglé, L.; Jaffe, D.A.; Weiss-Penzias, P.; Heckman, A.; Snow, J.A. Long-Range Transport of Asian Pollution to the Northeast Pacific: Seasonal Variations and Transport Pathways of Carbon Monoxide. J. Geophys. Res. D Atmos. 2004, 109, 1–16. [Google Scholar] [CrossRef]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.J.; Dentener, F.J.; Fischer, H.; Feichter, J.; Flatau, P.J.; Heland, J.; Holzinger, R.; et al. Global Air Pollution Crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; HeymsÞeld, A.J.; Ramanathan, V.; Welton, E.J. Reduction of Tropical Cloudiness by Soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Shao, H.; Coakley, J.A.; Curry, J.A.; Haggerty, J.A.; Tschudi, M.A. Retrieval of Cloud Droplet Size from Visible and Microwave Radiometric Measurements during INDOEX: Implication to Aerosols’ Indirect Radiative Effect. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Rosenfeld, D.; Artaxo, P.; Costa, A.A.; Frank, G.P.; Longo, K.M.; Silva-Dias, M.A.F. Smoking Rain Clouds over the Amazon. Science 2004, 303, 1337–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khain, A.; Rosenfeld, D.; Pokrovsky, A. Aerosol Impact on the Dynamics and Microphysics of Deep Convective Clouds. Q. J. R. Meteorol. Soc. 2005, 131, 2639–2663. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Rosenfeld, D.; Ding, Y.; Leung, L.R.; Li, Z. Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Lebo, Z.J.; Morrison, H.; Seinfeld, J.H. Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys. 2012, 12, 10059–10114. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, W.W. Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology. J. Atmos. Sci. 2015, 72, 2446–2464. [Google Scholar] [CrossRef]
- Cheng, C.T.; Wang, W.C.; Chen, J.P. Simulation of the Effects of Increasing Cloud Condensation Nuclei on Mixed-Phase Clouds and Precipitation of a Front System. Atmos. Res. 2010, 96, 461–476. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xue, H. The Role of Initial Cloud Condensation Nuclei Concentration in Hail Using the WRF NSSL 2-Moment Microphysics Scheme. Adv. Atmos. Sci. 2017, 34, 1106–1120. [Google Scholar] [CrossRef]
- Morrison, H.; Grabowski, W.W. Cloud-System Resolving Model Simulations of Aerosol Indirect Effects on Tropical Deep Convection and Its Thermodynamic Environment. Atmos. Chem. Phys. 2011, 11, 10503–10523. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Leung, L.R.; Rosenfeld, D.; Chen, Q.; Li, Z.; Zhang, J.; Yan, H. Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds. Proc. Natl. Acad. Sci. USA 2013, 110. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, W.W.; Morrison, H. Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology. Part II: Double-Moment Microphysics. J. Atmos. Sci. 2016, 73, 3749–3770. [Google Scholar] [CrossRef]
- Lebo, Z.J. The Sensitivity of a Numerically Simulated Idealized Squall Line to the Vertical Distribution of Aerosols. J. Atmos. Sci. 2014, 71, 4581–4596. [Google Scholar] [CrossRef]
- Marinescu, P.J.; van den Heever, S.C.; Saleeby, S.M.; Kreidenweis, S.M.; DeMott, P.J. The Microphysical Roles of Lower-Tropospheric versus Midtropospheric Aerosol Particles in Mature-Stage MCS Precipitation. J. Atmos. Sci. 2017, 74, 3657–3678. [Google Scholar] [CrossRef]
- Fridlind, A.M.; Ackerman, A.S.; Jensen, E.J.; Heymsfield, A.J.; Poellot, M.R.; Stevens, D.E.; Wang, D.; Miloshevich, L.M.; Baumgardner, D.; Lawson, R.P.; et al. Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei. Science 2004, 304, 718–722. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. Univ. Corp. Atmos. Res. 2008. NCAR/TN-475+STR. [Google Scholar] [CrossRef]
- Fu, J.; Chen, S.; Shen, X.; Zhang, X.; Quan, W. Comparative Study of the Cause of Rainfall and Its Forecast Biases of TWO Cold Vortex Rainfall Events in North China. Meteorol. Mon. 2019, 045, 606–620. [Google Scholar]
- Ziegler, C.L. Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. Part 1: Model Development and Preliminary Testing. J. Atmos. Sci. 1985, 42, 1487–1509. [Google Scholar] [CrossRef] [Green Version]
- Mansell, E.R. On Sedimentation and Advection in Multimoment Bulk Microphysics. J. Atmos. Sci. 2010, 67, 3084–3094. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L. Aerosol Effects on Simulated Storm Electrification and Precipitation in a Two-Moment Bulk Microphysics Model. J. Atmos. Sci. 2013, 70, 2032–2050. [Google Scholar] [CrossRef]
- Twomey, S. The nuclei of natural cloud formation part II: The Supersaturation in Natural Clouds and the Variation of Cloud Droplet Concentration. Geofis. Pura E Appl. 1959, 43, 243–249. [Google Scholar] [CrossRef]
- Fan, J.; Yuan, T.; Comstock, J.M.; Ghan, S.; Ovchinnikov, M. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Tao, W.-K.; Li, X.; Khain, A.; Matsui, T.; Lang, S.; Simpson, J. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud—Resolving model simulations. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Donner, L.J.; Phillips, V.T.J.; Ming, Y. The dependence of aerosol effect on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
References | Lebo (2014) [25] | Marinescu et al. (2017) [26] | Fridlind et al. (2004) [27] |
---|---|---|---|
Type of the deep convective systems | Squall line | Mesoscale convective systems | Deep convective storm |
Mid-tropospheric aerosols | More important: Enhances riming in the mixed-phase region and precipitation. | Less important: Only increases mixed-phase precipitation by enhancing riming. | More important for the formation of anvil crystals. |
Lower-tropospheric aerosols | Less important: Only suppresses the warm-rain process below the freezing level and can hardly affect the mixed-phase microphysics. | More important: Not only suppresses warm-rain precipitation, but can also be transported upwards and enhance riming and precipitation in the mixed-phase region. | Less important for the formation of anvil crystals. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Deng, X.; Zhu, R.; Ren, Y.; Xue, H. The Impact of Aerosol Vertical Distribution on a Deep Convective Cloud. Atmosphere 2021, 12, 675. https://doi.org/10.3390/atmos12060675
Zhang M, Deng X, Zhu R, Ren Y, Xue H. The Impact of Aerosol Vertical Distribution on a Deep Convective Cloud. Atmosphere. 2021; 12(6):675. https://doi.org/10.3390/atmos12060675
Chicago/Turabian StyleZhang, Minzhong, Xin Deng, Ruihao Zhu, Yangze Ren, and Huiwen Xue. 2021. "The Impact of Aerosol Vertical Distribution on a Deep Convective Cloud" Atmosphere 12, no. 6: 675. https://doi.org/10.3390/atmos12060675
APA StyleZhang, M., Deng, X., Zhu, R., Ren, Y., & Xue, H. (2021). The Impact of Aerosol Vertical Distribution on a Deep Convective Cloud. Atmosphere, 12(6), 675. https://doi.org/10.3390/atmos12060675