Climate Change, Aquatic Ecosystems and Human Infectious Diseases in a Globalised World
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frank, A.M.; Cains, M.G.; Henshel, D.S. A Predictive Human Health Risk Assessment of Non-Choleraic Vibrio spp. during Hurricane-Driven Flooding Events in Coastal South Carolina, USA. Atmosphere 2021, 12, 269. [Google Scholar] [CrossRef]
- Ochirbold, B.-E.; Tserendorj, A.; Westphal, K.; Karthe, D. Hygienic Condition of Different Water Sources in the Kharaa River Basin, Mongolia in the Light of a Rapid Warming Trend. Atmosphere 2020, 11, 1113. [Google Scholar] [CrossRef]
- Rodrigo, F.S. The Influence of Meteorological Conditions on the Yellow Fever Epidemic in Cádiz (Southern Spain) in 1800: A Historical Scientific Controversy. Atmosphere 2020, 11, 405. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.; Aguilar-Alba, M.; Vetter, M.; García-Barrón, L.; Morales, J. Spatiotemporal Distribution of Malaria in Spain in a Global Change Context. Atmosphere 2020, 11, 346. [Google Scholar] [CrossRef] [Green Version]
- Christaki, E.; Dimitriou, P.; Pantavou, K.; Nikolopoulos, G.K. The Impact of Climate Change on Cholera: A Review on the Global Status and Future Challenges. Atmosphere 2020, 11, 449. [Google Scholar] [CrossRef]
- Sousa, A.; García-Barrón, L.; Vetter, M.; Morales, J. The Historical Distribution of Main Malaria Foci in Spain as Related to Water Bodies. Int. J. Environ. Res. Publ. Health 2014, 11, 7896–7917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, A.; Andrade, F.; Félix, A.; Jurado, V.; León-Botubol, A.; García-Murillo, P.; García-Barrón, L.; Morales, J. La Importancia Histórica de los Humedales del Suroeste de España en la Transmisión de la Malaria. Limnetica 2009, 28, 283–300. [Google Scholar]
- Baker, R.E.; Mahmud, A.S.; Metcalf, C.J.E. Dynamic response of airborne infections to climate change: Predictions for varicella. Clim. Chang. 2018, 148, 547–560. [Google Scholar] [CrossRef]
- Díaz, J.; Ballester, F.; López-Vélez, R. Impacts on Human Health. In A Preliminary General Assessment of the Impacts in Spain Due to the Effects of Climate Change; Moreno Rodríguez, J.M., Ed.; Ministerio de Medio Ambiente: Madrid, Spain, 2005; pp. 699–742. [Google Scholar]
- Kuhn, K.; Campbell-Lendrum, D.; Haines, A.; Cox, J. Using Climate to Predict Infectious Disease Epidemics; World Health Organization: Geneva, Switzerland, 2005; Available online: http://www.who.int/globalchange/publications/infectdiseases/en/ (accessed on 1 May 2021).
- Smith, K.R.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.M.; Revich, B.; Sauerborn, R. Human Health: Impacts, Adaptation, and Co-Benefits. In Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 709–754. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap11_FINAL.pdf (accessed on 1 May 2021).
- Wolf, T.; Lyne, K.; Martinez, G.S.; Kendrovski, V. The Health Effects of Climate Change in the WHO European Region. Climate 2015, 3, 901–936. [Google Scholar] [CrossRef]
- Nichols, G.; Lake, I.; Heaviside, C. Climate Change and Water-Related Infectious Diseases. Atmosphere 2018, 9, 385. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001579-1. [Google Scholar]
- Mac Kenzie, W.R.; Hoxie, N.J.; Proctor, M.E.; Gradus, M.S.; Blair, K.A.; Peterson, D.E.; Kazmierczak, J.J.; Addiss, D.G.; Fox, K.R.; Rose, J.B.; et al. A Massive Outbreak in Milwaukee of Cryptosporidium Infection Transmitted Through the Public Water Supply. New Engl. J. Med. 1994, 331, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, A.; Loaiza, J.R.; Yee, D.A.; Poh, K.C.; Watkins, A.S.; Lucas, K.J.; Rapp, T.J.; Kline, L.; Ahmed, A.; Chen, S.; et al. Do socioeconomic factors drive Aedes mosquito vectors and their arboviral diseases? A systematic review of dengue, chikungunya, yellow fever, and Zika Virus. One Health 2020, 11, 100188. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Aguilar-Alba, M.; Vetter, M.; García-Barrón, L.; Morales, J. Drivers of autochthonous and imported malaria in Spain and their relationship with meteorological variables. Euro Mediterr. J. Environ. Integr. 2021, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Patz Hulme, M.; Rosenzweig, C.; Mitchell, T.D.; Goldberg, R.A.; Githeko, A.K.; Le Sueur, D.J.A. Climate change (Communication arising): Regional warming and malaria resurgence. Nature 2002, 420, 627–628. [Google Scholar] [CrossRef] [PubMed]
Disease | Agent | Transmission Mode | Variables Related to the Aquatic Environment that May Be Involved |
---|---|---|---|
Chikungunya | Chikungunya virus | Mosquito (Aedes spp.) | Increased temperatures (up to 40 °C) and rainfall |
Cholera | Vibrio cholerae | Water | Increase in water and air temperature, extreme events associated with precipitation, ENSO, sea level rise, drought, salinity, etc. |
Dengue | Flavivirus | Mosquito (Aedes aegypti, A. albopictus) | High temperature, humidity and rainfall |
Fecal coliforms | Escherichia, etc. | Water | Increased temperatures |
Leishmaniasis | Leishmania spp. | Sandflies (Phlebotominae) | Increases in temperature and rainfall (specially mean temperature of the coldest quarter, annual temperature range, temperature of the warmest quarter and precipitation of the warmest quarter) |
Malaria | Plasmodium | Mosquito (Anopheles spp.) | Monthly temperatures of spring and summer (maximum, minimum and mean) and, to a lesser extent, precipitation and humidity. |
Rift valley fever | Phlebovirus | Mosquito (Aedes, Culex) | Heavy rains |
Vibriosis | Vibrio | Water | Extreme events related to precipitation (floods and overflows), storms, hurricanes, coastal water temperatures, etc. |
West Nile Virus | Flavivirus | Mosquito (Culex, Aedes) | High temperatures and heavy precipitation |
Yellow fever | Flavivirus | Mosquito (Aedes aegypti) | High temperature and heavy rain (specially humid winters and springs, warm summers) |
Zika virus | Flavivirus | Mosquito (Aedes spp.) | Increased temperatures, ENSO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, A.; Aguilar-Alba, M.; García-Barrón, L. Climate Change, Aquatic Ecosystems and Human Infectious Diseases in a Globalised World. Atmosphere 2021, 12, 653. https://doi.org/10.3390/atmos12050653
Sousa A, Aguilar-Alba M, García-Barrón L. Climate Change, Aquatic Ecosystems and Human Infectious Diseases in a Globalised World. Atmosphere. 2021; 12(5):653. https://doi.org/10.3390/atmos12050653
Chicago/Turabian StyleSousa, Arturo, Mónica Aguilar-Alba, and Leoncio García-Barrón. 2021. "Climate Change, Aquatic Ecosystems and Human Infectious Diseases in a Globalised World" Atmosphere 12, no. 5: 653. https://doi.org/10.3390/atmos12050653
APA StyleSousa, A., Aguilar-Alba, M., & García-Barrón, L. (2021). Climate Change, Aquatic Ecosystems and Human Infectious Diseases in a Globalised World. Atmosphere, 12(5), 653. https://doi.org/10.3390/atmos12050653