A Predictive Human Health Risk Assessment of Non-Choleraic Vibrio spp. during Hurricane-Driven Flooding Events in Coastal South Carolina, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Relative Risk Model
2.3. Data Sources
2.4. ArcGIS and Relative Risk Model Analysis and Visualization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Methods
Appendix A.2. Results
Appendix B
County | Cases 2014 | Cases 2015 | Cases 2016 | Cases 2017 | Cases 2018 |
---|---|---|---|---|---|
Beaufort | 3 | 2 | 5 | 4 | 5 |
Berkeley | 0 | 0 | 2 | 1 | 0 |
Charleston | 6 | 1 | 6 | 9 | 8 |
Colleton | 0 | 0 | 1 | 1 | 0 |
Dorchester | 0 | 0 | 1 | 3 | 5 |
Georgetown | 0 | 0 | 0 | 1 | 1 |
Horry | 3 | 3 | 1 | 2 | 1 |
Jasper | 1 | 1 | 0 | 0 | 0 |
8 County Totals | 13 | 7 | 16 | 21 | 20 |
South Carolina Totals | 18 | 11 | 22 | 37 | 39 |
Percent of SC Cases | 72% | 64% | 73% | 57% | 51% |
References
- Lindsey, R. Arizona Energy: News 2017. Available online: http://arizonaenergy.org/News_17/News_Sep17/ClimateChangeGlobalSeaLevel.html (accessed on 25 October 2020).
- The National Aeronautics and Space Administration (NASA): Global Climate Change 2020 August. Available online: https://climate.nasa.gov/vital-signs/sea-level/#:~:text=Sea%20level%20rise%20is%20caused,of%20seawater%20as%20it%20warms (accessed on 29 December 2020).
- Mitchell, J.K.; Ericksen, N.J. Effects of Climate Change on Weather-Related Disasters. In Confronting Climate Change: Risks, Implications and Responses; Cambridge University Press: Cambridge, UK, 1992; pp. 141–151. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ivers, L.C.; Ryan, E.T. Infectious diseases of severe weather-related and flood-related natural disasters. Curr. Opin. Infect. Dis. 2006, 19, 408–414. [Google Scholar] [CrossRef]
- McMichael, A.J. Extreme weather events and infectious disease outbreaks. Virulence 2015, 6, 543–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Li, X.; Yan, D.; Wang, K.; Weng, B.; Qin, T.; Liu, S. Flood Risk Assessment of Global Watersheds Based on Multiple Machine Learning Models. Water 2019, 11, 1654. [Google Scholar] [CrossRef] [Green Version]
- (FSF) First Street Foundation Flood Factor: Flood Risk is increasing for South Carolina 2020. Available online: https://floodfactor.com/state/southcarolina/45_fsid (accessed on 12 November 2020).
- Strauss, B.; Tebaldi, C.; Kulp, S.; Cutter, S.; Emrich, C.; Rizza, D.; Yawitz, D. South Carolina and the Surging Sea: A Vulnerability Assessment with Projections for Sea Level Rise and Coastal Flood Risk. Climate Central Research Report. 2020. Available online: https://riskfinder.climatecentral.org/api/reports/state/south-carolina.us/state-report?lang=en (accessed on 12 November 2020).
- Elsner, J.B. Evidence in support of the climate change–Atlantic hurricane hypothesis. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P.; Hall, T.; Knutson, T.; Kunkel, K.E.; Trapp, R.J.; Waliser, D.E.; Wehner, M.F. Extreme storms. In Climate Science Special Report: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 257–276. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; Available online: https://www.ipcc.ch/report/ar4/syr/ (accessed on 12 November 2020).
- Deeb, R.; Tufford, D.; Scott, G.I.; Moore, J.G.; Dow, K. Impact of climate change on Vibrio vulnificus abundance and exposure risk. Estuaries Coast. 2018, 41, 2289–2303. [Google Scholar] [CrossRef]
- Hsieh, J.L.; Fries, J.S.; Noble, R.T. Dynamics and predictive modelling of Vibrio spp. in the Neuse River Estuary, North Carolina, USA. Environ. Microbiol. 2008, 10, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Randa, M.A.; Polz, M.F.; Lim, E. Effects of temperature and salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR. Appl. Environ. Microbiol. 2004, 70, 5469–5476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Geological Survey (USGS). USGS Water–Quality Historical Instantaneous Data for South Carolina: Build Time Series. National Water Information System: Web Interface. 2020. Available online: https://waterdata.usgs.gov/sc/nwis/uv/?referred_module=qw (accessed on 12 November 2020).
- Horseman, M.A.; Surani, S. A comprehensive review of Vibrio vulnificus: An important cause of severe sepsis and skin and soft–tissue infection. Int. J. Infect. Dis. 2011, 15, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.M.; Rhodes, M.; Brown, C.W.; Hood, R.R.; Leight, A.; Long, W.; Wood, R. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay. J. Appl. Microbiol. 2014, 117, 1312–1327. [Google Scholar] [CrossRef]
- Johnson, C.N.; Bowers, J.C.; Griffittt, K.J.; Molina, V.; Clostio, R.W.; Pei, S.; Laws, E.; Paranjpye, R.N.; Strom, M.S.; Chen, A.; et al. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl. Environ. Microbiol. 2012, 78, 7249–7257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohrel, R.L., Jr.; Register, K.M. Volunteer Estuary Monitoring: A Methods Manual, 2nd Ed. 2007. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/2007_04_09_estuaries_monitoruments_manual.pdf (accessed on 12 November 2020).
- Baker-Austin, C.; Stockley, L.; Rangdale, R.; Martinez-Urtaza, J. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: A European perspective. Environ. Microbiol. Rep. 2010, 2, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.D. Wound infections caused by Vibrio vulnificus and other marine bacteria. Epidemiol. Infect. 2005, 133, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Dechet, A.M.; Yu, P.A.; Koram, N.; Painter, J. Nonfoodborne Vibrio infections: An important cause of morbidity and mortality in the United States, 1997–2006. Clin. Infect. Dis. 2008, 46, 970–976. [Google Scholar] [CrossRef] [Green Version]
- United States Centers for Disease Control and Prevention. Cholera and Other Vibrio Illness Surveillance (COVIS): COVIS Annual Summaries on Human Vibrio Cases Reported to CDC, 1997–2014. 2019. Available online: https://www.cdc.gov/vibrio/surveillance.html (accessed on 12 November 2020).
- Youngblood, C.; Barker, M.; (South Carolina Department of Health and Environmental Control, 2100 Bull Street, Columbia, SC, USA). Personal communication, 2019.
- European Centre for Disease Prevention and Control. ECDC Geoportal: Vibrio Map Viewer. 2020. Available online: https://geoportal.ecdc.europa.eu/vibriomapviewer/ (accessed on 12 November 2020).
- United States National Oceanic and Atmospheric Administration Tropical Cyclone Climatology. National Hurricane Center and Central Pacific Hurricane Center. 2020. Available online: https://www.nhc.noaa.gov/climo/ (accessed on 29 December 2020).
- Landis, W.G.; Wiegers, J.A. Design considerations and a suggested approach for regional and comparative ecological risk assessment. Hum. Ecol. Risk Assess. 1997, 3, 287–297. [Google Scholar] [CrossRef]
- Kumpulainen, S. Vulnerability concepts in hazard and risk assessment. Geol. Surv. Finl. 2006, 42, 65. [Google Scholar]
- Feaster, T.D.; Weaver, J.C.; Gotvald, A.J.; Kolb, K.R. Preliminary peak stage and streamflow data for selected US Geological Survey stream gaging stations in North and South Carolina for flooding following Hurricane Florence, September 2018 (No. 2018–1172). US Geol. Surv. 2018, 9. [Google Scholar] [CrossRef]
- Landis, W.G.; Ayre, K.K.; Johns, A.F.; Summers, H.M.; Stinson, J.; Harris, M.J.; Herring, C.E.; Markiewicz, A.J. The multiple stressor ecological risk assessment for the mercury-contaminated South River and upper Shenandoah River using the Bayesian network-relative risk model. Integr. Environ. Assess. Manag. 2017, 13, 85–99. [Google Scholar] [CrossRef]
- Hines, E.E.; Landis, W.G. Regional risk assessment of the Puyallup River Watershed and the evaluation of low impact development in meeting management goals. Integr. Environ. Assess. Manag. 2014, 10, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Wiegers, J.K.; Feder, H.M.; Mortensen, L.S.; Shaw, D.G.; Wilson, V.J.; Landis, W.G. A regional multiple–stressor rank–based ecological risk assessment for the fjord of Port Valdez, Alaska. Hum. Ecol. Risk Assess. 1998, 4, 1125–1173. [Google Scholar] [CrossRef]
- Landis, W.G.; Wiegers, J.K. Introduction to the regional risk assessment using the relative risk model. In Regional Scale Ecological Risk Assessment–Using the Relative Risk Model; CRC Press: Boca Raton, FL, USA, 2005; pp. 11–36. [Google Scholar]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B. A social vulnerability index for disaster management. J. Homel. Secur. Emerg. Manag. 2011, 8, 3. [Google Scholar] [CrossRef]
- World Fisheries Trust: Subsistence Fishing. Available online: http://www.worldfish.org/GCI/gci_assets_moz/Fact%20Card%20-%20Subsistence%20Fishing.pdf (accessed on 12 November 2020).
- Environmental Systems Research Institute (ESRI). ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Zachry, B.C.; Booth, W.J.; Rhome, J.R.; Sharon, T.M. A national view of storm surge risk and inundation. Weather Clim. Soc. 2015, 7, 109–117. [Google Scholar] [CrossRef]
- United States National Oceanic and Atmospheric Administration: National Storm Surge Hazards Maps Version 2—Texas to Maine. US National Hurricane Center, 2019. Available online: https://www.nhc.noaa.gov/nationalsurge/ (accessed on 29 December 2020).
- United States Census Bureau. Geographic Areas Reference Manual; US Dept. of Commerce, Economics and Statistics Administration, Bureau of the Census: Suitland, MA, USA, 1994. [Google Scholar]
- United States Census Bureau. American Community Survey 5–Year Estimates, Table B01003; Generated by Alexandra Frank; Using Data.Census.Gov. 2018. Available online: https://data.census.gov/cedsci/ (accessed on 6 April 2020).
- Knapp, L.; Levine, N.S. Developing High–Resolution Data and Neighborhood–Scale Flood Modeling in Charleston County, SC. 2019. Available online: https://gacoast.uga.edu/wp-content/uploads/2019/07/05-Knapp-CPASW19-ThursSession07-NeighborhoodFloods.pdf (accessed on 15 December 2020).
- World Population Review: US States. Available online: https://worldpopulationreview.com/state-rankings/average-height-by-state (accessed on 5 December 2020).
- Gerba, C.P.; Rose, J.B.; Haas, C.N. Sensitive populations: Who is at the greatest risk? Int. J. Food Microbiol. 1996, 30, 113–123. [Google Scholar] [CrossRef]
- Bukvic, A.; Gohlke, J.; Borate, A.; Suggs, J. Aging in flood–prone coastal areas: Discerning the health and well–being risk for older residents. Int. J. Environ. Res. Public Health 2018, 15, 2900. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Hong, W.H.; Lee, Y.H. Experimental study on the influence of water depth on the evacuation speed of elderly people in flood conditions. Int. J. Disaster Risk Reduct. 2019, 39, 101198. [Google Scholar] [CrossRef]
- United States Census Bureau. TIGER/Line® Shapefiles: Counties (and Equivalent), 2018. Available online: https://www.census.gov/cgi–bin/geo/shapefiles/index.php?year=2018&layergroup=Counties+%28and+equivalent%29 (accessed on 5 December 2020).
- United States Census Bureau. TIGER/Line® Shapefiles: Block Groups—South Carolina, 2018. Available online: https://www.census.gov/cgi–bin/geo/shapefiles/index.php?year=2018&layergroup=Block+Groups (accessed on 5 December 2020).
- Williams, E. People Moving from Other States Made SC 6th–Fastest–Growing as US Birth Rates Slow. The Post and Courier, 2019. Available online: https://www.postandcourier.com/business/real_estate/people-moving-from-other-states-made-sc-6th-fastest-growing-as-us-birth-rates-slow/article_c9af2b82-2b2b-11ea-8097-23a834338579.html (accessed on 29 December 2020).
- South Carolina Association of Counties. Available online: https://www.sccounties.org/sites/default/files/uploads/services/education-and-training/planning-and-zoning-education/051419_webcast/south_carolinas_changing_demographics_sc_assoc_of_counties_5–14–19.pdf (accessed on 5 December 2020).
- National Ocean Service: What Is High Tide Flooding? Available online: https://oceanservice.noaa.gov/facts/nuisance-flooding.html (accessed on 29 December 2020).
- Runkle, J.; Kunkel, K.; Stevens, L.; Frankson, R.; Stewart, B.; Sweet, W. South Carolina State Climate Summary. NOAA Technical Report NESDIS 2017. Available online: https://statesummaries.ncics.org/chapter/sc/ (accessed on 29 December 2020).
- Morris, J.T.; Renken, K.A. Past, present, and future nuisance flooding on the Charleston peninsula. PLoS ONE 2020, 15, e0238770. [Google Scholar] [CrossRef]
- South Carolina Department of Parks, Recreation & Tourism. South Carolina State Parks. Available online: https://southcarolinaparks.com/ (accessed on 30 December 2020).
- Shapiro, R.L.; Altekruse, S.; Hutwagner, L.; Bishop, R.; Hammond, R.; Wilson, S.; Ray, B.; Thompson., S.; Tauxe, R.V.; Griffin, P.M. The role of Gulf Coast oysters harvested in warmer months in Vibrio vulnificus infections in the United States, 1988–1996. J. Infect. Dis. 1998, 178, 752–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanerolle, L.W.J.; Daniels, R.; Zhang, B.; Jacobs, J.M. Skill Assessment of NOAA’s Chesapeake Bay Vibrio vulnificus Model. NOAA Technical Memorandum NOS NCCOS 215 2016. Available online: https://repository.library.noaa.gov/view/noaa/12905 (accessed on 30 December 2020).
- First Street Foundation. First Street Foundation Flood Model (FSF–FM) Technical Documentation. 2020. Available online: https://assets.firststreet.org/uploads/2020/06/FSF_Flood_Model_Technical_Documentation.pdf (accessed on 28 January 2021).
- Dhillon, G.S.; Inamdar, S. Storm event patterns of particulate organic carbon (POC) for large storms and differences with dissolved organic carbon (DOC). Biogeochemistry 2014, 118, 61–81. [Google Scholar] [CrossRef]
- Raj, A.; Fretwell, S.; Penney, V.; Moutinho, S.; Lombardi, K. (20 October 2020) Deadly Bacteria Lurk in Coastal Waters. Climate Change Increases the Risks. The Center for Public Integrity. Available online: https://publicintegrity.org/environment/hidden–epidemics/vibrio-deadly-bacteria-coastal-waters-climate-change-health/ (accessed on 30 December 2020).
- Barkin, D. (20 October 2020) To Tell the Story of Climate Change, We Went Beyond the Beach. Here’s How We Did It. The News & Observer. Available online: https://www.newsobserver.com/living/article246561673.html (accessed on 30 December 2020).
- Watts, N.; Amann, M.; Arnell, N.; Ayeb–Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell–Lendrum, D.; et al. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet 2020, 397. [Google Scholar] [CrossRef]
- Lundgren, R.E.; McMakin, A.H. Risk Communication: A Handbook for Communicating Environmental, Safety, and Health Risks; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Levy, S. Warming trend: How climate shapes Vibrio ecology. Environ. Health Persp. 2015, 123, A82–A89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, S. ECDC Vibrio Map Viewer: Tracking the whereabouts of pathogenic species. Environ. Health Persp. 2018, 126, 034003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control (ECDC) Vibrio Map Viewer Geoportal. Available online: https://geoportal.ecdc.europa.eu/vibriomapviewer/ (accessed on 9 February 2021).
- Semenza, J.C.; Trinanes, J.; Lohr, W.; Sudre, B.; Löfdahl, M.; Martinez–Urtaza, J.; Nichols, G.L.; Rocklöv, J. Environmental suitability of Vibrio infections in a warming climate: An early warning system. Environ. Health Persp. 2017, 125, 107004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Centers for Disease Control and Prevention. Cholera and Other Vibrio Illness Surveillance (COVIS) System. Available online: https://www.cdc.gov/vibrio/surveillance.html (accessed on 9 February 2021).
- United States Centers for Disease Control and Prevention. National Notifiable Diseases Surveillance System (NNDSS). Available online: https://wwwn.cdc.gov/nndss/ (accessed on 9 February 2021).
- United States Centers for Disease Control and Prevention. National Outbreak Reporting System (NORS). Available online: https://www.cdc.gov/nors/index.html (accessed on 9 February 2021).
- United States National Oceanic and Atmospheric Administration. National Weather Service: Significant Weather/Climate Event Archive 2020. Available online: https://www.weather.gov/chs/events (accessed on 25 October 2020).
- Lewis, E. The practical salinity scale 1978 and its antecedents. IEEE J. Ocean. Eng. 1980, 5.1, 3–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, A.M.; Cains, M.G.; Henshel, D.S. A Predictive Human Health Risk Assessment of Non-Choleraic Vibrio spp. during Hurricane-Driven Flooding Events in Coastal South Carolina, USA. Atmosphere 2021, 12, 269. https://doi.org/10.3390/atmos12020269
Frank AM, Cains MG, Henshel DS. A Predictive Human Health Risk Assessment of Non-Choleraic Vibrio spp. during Hurricane-Driven Flooding Events in Coastal South Carolina, USA. Atmosphere. 2021; 12(2):269. https://doi.org/10.3390/atmos12020269
Chicago/Turabian StyleFrank, Alexandra M., Mariana G. Cains, and Diane S. Henshel. 2021. "A Predictive Human Health Risk Assessment of Non-Choleraic Vibrio spp. during Hurricane-Driven Flooding Events in Coastal South Carolina, USA" Atmosphere 12, no. 2: 269. https://doi.org/10.3390/atmos12020269
APA StyleFrank, A. M., Cains, M. G., & Henshel, D. S. (2021). A Predictive Human Health Risk Assessment of Non-Choleraic Vibrio spp. during Hurricane-Driven Flooding Events in Coastal South Carolina, USA. Atmosphere, 12(2), 269. https://doi.org/10.3390/atmos12020269