Geochemical Mapping, Risk Assessment, and Source Identification of Heavy Metals in Road Dust Using Positive Matrix Factorization (PMF)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Sample Collection and Analysis
2.3. Quality Assurance/Quality Control (QA/QC)
2.4. Geochemical Mapping
2.5. Positive Matrix Factorization (PMF)
2.6. Risk Assessment Methods
2.6.1. Geo-Accumulation Index (Igeo)
2.6.2. Potential Ecological Risk Index (RI)
2.6.3. Nemerow Synthetic Pollution Index (PIN)
3. Results and Discussions
3.1. Occurrence of Heavy Metals in Road Dust
3.2. Geochemical Mapping
3.3. Pollution Source Analysis with PMF
3.4. Risk Assessment of Heavy Metals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Li, S.; Cui, X.; Li, H.; Qian, X.; Wang, C.; Sun, Y. Bioaccessibility, Sources and Health Risk Assessment of Trace Metals in Urban Park Dust in Nanjing, Southeast China. Ecotoxicol. Environ. Saf. 2016, 128, 161–170. [Google Scholar] [CrossRef]
- Selonen, V.; Varjonen, R.; Korpimäki, E. Immediate or Lagged Responses of a Red Squirrel Population to Pulsed Resources. Oecologia 2015, 177, 401–411. [Google Scholar] [CrossRef]
- De Silva, S.; Ball, A.S.; Huynh, T.; Reichman, S.M. Metal Accumulation in Roadside Soil in Melbourne, Australia: Effect of Road Age, Traffic Density and Vehicular Speed. Environ. Pollut. 2016, 208, 102–109. [Google Scholar] [CrossRef]
- Xu, J.L.; Tang, Z.H.; Shang, J.C.; Zhao, Y.H. Comprehensive Evaluation of Municipal Garbage Disposal in Changchun City by the Strategic Environmental Assessment. Environ. Sci. Pollut. Res. Int. 2010, 17, 1090–1097. [Google Scholar] [CrossRef]
- Liu, E.; Wang, X.; Liu, H.; Liang, M.; Zhu, Y.; Li, Z. Chemical Speciation, Pollution and Ecological Risk of Toxic Metals in Readily Washed off Road Dust in a Megacity (Nanjing), China. Ecotoxicol. Environ. Saf. 2019, 173, 381–392. [Google Scholar] [CrossRef]
- Manno, E.; Varrica, D.; Dongarrà, G. Metal Distribution in Road Dust Samples Collected in an Urban Area Close to a Petrochemical Plant at Gela, Sicily. Atmos. Environ. 2006, 40, 5929–5941. [Google Scholar] [CrossRef]
- Bilos, C.; Colombo, J.C.; Skorupka, C.N.; Rodriguez Presa, M.J. Sources, Distribution and Variability of Airborne Trace Metals in La Plata City Area, Argentina. Environ. Pollut. 2001, 111, 149–158. [Google Scholar] [CrossRef]
- Kováčik, J.; Dudáš, M.; Hedbavny, J.; Mártonfi, P. Dandelion Taraxacum Linearisquameum Does Not Reflect Soil Metal Content in Urban Localities. Environ. Pollut. 2016, 218, 160–167. [Google Scholar] [CrossRef]
- Joshi, U.M.; Vijayaraghavan, K.; Balasubramanian, R. Elemental Composition of Urban Street Dusts and Their Dissolution Characteristics in Various Aqueous Media. Chemosphere 2009, 77, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Lu, X.; Chao, S.; Xu, X. Multivariate Statistical Analysis of Heavy Metals in Less than 100 Μm Particles of Street Dust from Xining, China. Environ. Earth Sci. 2014, 73. [Google Scholar] [CrossRef]
- Ghanavati, N.; Nazarpour, A.; De Vivo, B. Ecological and Human Health Risk Assessment of Toxic Metals in Street Dusts and Surface Soils in Ahvaz, Iran. Environ. Geochem. Health 2019, 41, 875–891. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-González, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jiménez-Ballesta, R. Heavy Metal Accumulation Related to Population Density in Road Dust Samples Taken from Urban Sites under Different Land Uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Gunawardena, J.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Atmospheric Deposition as a Source of Heavy Metals in Urban Stormwater. Atmos. Environ. 2013, 68, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain Size Distribution of Road-Deposited Sediment and Its Contribution to Heavy Metal Pollution in Urban Runoff in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [Google Scholar] [CrossRef]
- Roy, S.; Gupta, S.K.; Prakash, J.; Habib, G.; Baudh, K.; Nasr, M. Ecological and Human Health Risk Assessment of Heavy Metal Contamination in Road Dust in the National Capital Territory (NCT) of Delhi, India. Environ. Sci. Pollut. Res. 2019, 26, 30413–30425. [Google Scholar] [CrossRef]
- Zhang, J.; Hua, P.; Krebs, P. Influences of Land Use and Antecedent Dry-Weather Period on Pollution Level and Ecological Risk of Heavy Metals in Road-Deposited Sediment. Environ. Pollut. 2017, 228, 158–168. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Tavakol, T.; Lahijanzadeh, A.R.; Jaafarzadeh, N.; Kermani, M. Ecological and Human Health Hazards of Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in Road Dust of Isfahan Metropolis, Iran. Sci. Total Environ. 2015, 505, 712–723. [Google Scholar] [CrossRef]
- Safiur Rahman, M.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing Risk to Human Health for Heavy Metal Contamination through Street Dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Li, L.Y. Spatial Distribution and Risk Assessment of Metals in Dust Based on Samples from Nursery and Primary Schools of Xi’an, China. Atmos. Environ. 2014, 88, 172–182. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Huang, J.; Huang, D.; Yang, J.; Song, Y.; Zeng, G. Heavy Metals in Road Dust from Xiandao District, Changsha City, China: Characteristics, Health Risk Assessment, and Integrated Source Identification. Environ. Sci. Pollut. Res. Int. 2016, 23, 13100–13113. [Google Scholar] [CrossRef]
- Yang, S.; Li, P.; Liu, J.; Bi, X.; Ning, Y.; Wang, S.; Wang, P. Profiles, Source Identification and Health Risks of Potentially Toxic Metals in Pyrotechnic-Related Road Dust during Chinese New Year. Ecotoxicol. Environ. Saf. 2019, 184, 109604. [Google Scholar] [CrossRef]
- Cai, K.; Li, C.; Na, S. Spatial Distribution, Pollution Source, and Health Risk Assessment of Heavy Metals in Atmospheric Depositions: A Case Study from the Sustainable City of Shijiazhuang, China. Atmosphere 2019, 10, 222. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Wang, J.; Xuan, B.; Cai, X.; Zhang, Y. Spatial Distribution and Health Risk Assessment of Heavy Metals in Urban Road Dust of Guiyang, China. Nat. Environ. Pollut. Technol. 2018, 17, 407–412. [Google Scholar]
- Mahowald, N.M.; Scanza, R.; Brahney, J.; Goodale, C.L.; Hess, P.G.; Moore, J.K.; Neff, J. Aerosol Deposition Impacts on Land and Ocean Carbon Cycles. Curr. Clim. Change Rep. 2017, 3, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Athanasopoulou, E.; Tombrou, M.; Russell, A.G.; Karanasiou, A.; Eleftheriadis, K.; Dandou, A. Implementation of Road and Soil Dust Emission Parameterizations in the Aerosol Model CAMx: Applications over the Greater Athens Urban Area Affected by Natural Sources. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, X. Risk Assessment of Metals in Road-Deposited Sediment along an Urban–Rural Gradient. Environ. Pollut. 2013, 174, 297–304. [Google Scholar] [CrossRef]
- Gunawardana, C.; Egodawatta, P.; Goonetilleke, A. Role of Particle Size and Composition in Metal Adsorption by Solids Deposited on Urban Road Surfaces. Environ. Pollut. 2014, 184, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, A.; Li, Y.; Zhang, L.; Zhang, G.; Guan, Y. Polycyclic Aromatic Hydrocarbons Associated with Road Deposited Solid and Their Ecological Risk: Implications for Road Stormwater Reuse. Sci. Total Environ. 2016, 563–564, 190–198. [Google Scholar] [CrossRef]
- Gąsiorek, M.; Kowalska, J.; Mazurek, R.; Pająk, M. Comprehensive Assessment of Heavy Metal Pollution in Topsoil of Historical Urban Park on an Example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef]
- Bergthorson, J.M.; Goroshin, S.; Soo, M.J.; Julien, P.; Palecka, J.; Frost, D.L.; Jarvis, D.J. Direct Combustion of Recyclable Metal Fuels for Zero-Carbon Heat and Power. Appl. Energy 2015, 160, 368–382. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Q.; Meng, Q.; Lu, P.; Meng, L. Distribution and Bioavailability of Metals in Subsidence Land in a Coal Mine China. Bull. Environ. Contam. Toxicol. 2012, 89, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Shabanda, I.; Koki, I.B.; Low, K.; Zain, S.M.; Khor, S.M.; Bakar, N.A.A. Daily Exposure to Toxic Metals through Urban Road Dust from Industrial, Commercial, Heavy Traffic, and Residential Areas in Petaling Jaya, Malaysia: A Health Risk Assessment. Environ. Sci. Pollut. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, R.; Wang, H.; Yu, W.; Xu, F.; Shen, Z. Identification and Apportionment of Hazardous Elements in the Sediments in the Yangtze River Estuary. Environ. Sci. Pollut. Res. Int. 2015, 22, 20215–20225. [Google Scholar] [CrossRef]
- Wang, W.H.; Wong, M.H.; Leharne, S.; Fisher, B. Fractionation and Biotoxicity of Heavy Metals in Urban Dusts Collected from Hong Kong and London. Environ. Geochem. Health 1998, 20, 185–198. [Google Scholar] [CrossRef]
- Saba, T.; Su, S. Tracking Polychlorinated Biphenyls (PCBs) Congener Patterns in Newark Bay Surface Sediment Using Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF). J. Hazard. Mater. 2013, 260, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Water Quality Assessment and Apportionment of Pollution Sources Using APCS-MLR and PMF Receptor Modeling Techniques in Three Major Rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef]
- Milic, A.; Miljevic, B.; Alroe, J.; Mallet, M.; Canonaco, F.; Prevot, A.S.H.; Ristovski, Z.D. The Ambient Aerosol Characterization during the Prescribed Bushfire Season in Brisbane 2013. Sci. Total Environ. 2016, 560–561, 225–232. [Google Scholar] [CrossRef]
- Li, Y.; Song, N.; Yu, Y.; Yang, Z.; Shen, Z. Characteristics of PAHs in Street Dust of Beijing and the Annual Wash-off Load Using an Improved Load Calculation Method. Sci. Total Environ. 2017, 581–582, 328–336. [Google Scholar] [CrossRef]
- Liu, R.; Men, C.; Liu, Y.; Yu, W.; Xu, F.; Shen, Z. Spatial Distribution and Pollution Evaluation of Heavy Metals in Yangtze Estuary Sediment. Mar. Pollut. Bull. 2016, 110, 564–571. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health Risk Assessment of Heavy Metal Exposure to Street Dust in the Zinc Smelting District, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- The State Council on the General Planning of Zhengzhou City. Available online: http://www.gov.cn/zwgk/2010-08/23/content_1686432.htm (accessed on 23 October 2010).
- Zhengzhou Local History Office. Available online: http://szb.zhengzhou.gov.cn/html/2012/zzgl_1219/57.html (accessed on 11 February 2016).
- Zhengzhou Local History Office. Available online: http://szb.zhengzhou.gov.cn/zzgl/1142969.jhtml (accessed on 18 April 2014).
- Zhengzhou Statistical Bulletin on National Economic and Social Development. 2019. Available online: http://tjj.zhengzhou.gov.cn/tjgb/3112732.jhtml (accessed on 7 February 2021).
- Zhengzhou Municipal Public Bureau. Available online: http://zzga.zhengzhou.gov.cn/jfgg/3460061.jhtml (accessed on 24 June 2020).
- The Number of Electric Vehicles in Zhengzhou Has Exceeded 3 Million-China Electric Vehicle Association. Available online: http://www.ceva.org.cn/cn/viewnews/20191015/20191015102917.htm (accessed on 15 October 2019).
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution Characteristics, Risk Assessment, and Source Apportionment of Heavy Metals in Road Dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.; Pan, H. Analysis of Heavy Metals in the Re-Suspended Road Dusts from Different Functional Areas in Xi’an, China. Environ. Sci. Pollut. Res. 2016, 23, 19838–19846. [Google Scholar] [CrossRef]
- Lin, H.; Zhu, X.; Feng, Q.; Guo, J.; Sun, X.; Liang, Y. Pollution, Sources, and Bonding Mechanism of Mercury in Street Dust of a Subtropical City, Southern China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 393–409. [Google Scholar] [CrossRef]
- Kurt-Karakus, P.B. Determination of Heavy Metals in Indoor Dust from Istanbul, Turkey: Estimation of the Health Risk. Environ. Int. 2012, 50, 47–55. [Google Scholar] [CrossRef]
- Li, H.; Shi, A.; Zhang, X. Particle Size Distribution and Characteristics of Heavy Metals in Road-Deposited Sediments from Beijing Olympic Park. J. Environ. Sci. 2015, 32, 228–237. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, K.; Li, Z.; Bi, J.; Huang, L. Heavy Metals in Soils and Road Dusts in the Mining Areas of Western Suzhou, China: A Preliminary Identification of Contaminated Sites. J. Soils Sediments 2016, 16, 204–214. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, J.; Yin, C.; Li, X. Index Models to Evaluate the Potential Metal Pollution Contribution from Washoff of Road-Deposited Sediment. Water Res. 2014, 59, 71–79. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Okonkwo, J.O. Trace Metals, Anions and Polybromodiphenyl Ethers in Settled Indoor Dust and Their Association. Environ. Sci. Pollut. Res. 2013, 20, 4895–4905. [Google Scholar] [CrossRef]
- Coufalík, P.; Zvěřina, O.; Mikuška, P.; Komárek, J. Seasonal Variability of Mercury Contents in Street Dust in Brno, Czech Republic. Bull. Environ. Contam. Toxicol. 2014, 93, 503–508. [Google Scholar] [CrossRef]
- Solid Waste–Determination of Metals–Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (HJ 766-2015)|EISP. Available online: http://www.caeisp.org.cn/solid-waste%E2%80%93determination-metals%E2%80%93inductively-coupled-plasma-mass-spectrometry-icp-mshj-766-2015 (accessed on 19 January 2021).
- HJ 680-2013 PDF. Available online: https://www.chinesestandard.net/PDF/English.aspx/HJ680-2013 (accessed on 19 January 2021).
- Soil and Sediment-Determination of Aqua Regia Extracts of 12 Metal Elements-Inductively Coupled Plasma Mass Spectrometry. Available online: http://english.mee.gov.cn/Resources/standards/Soil/Method_Standard4/201607/t20160704_357088.shtml (accessed on 23 February 2021).
- Yu, Y.; Ma, J.; Song, N.; Wang, X.; Wei, T.; Yang, Z.; Li, Y. Comparison of Metal Pollution and Health Risks of Urban Dust in Beijing in 2007 and 2012. Environ. Monit. Assess. 2016, 188, 657. [Google Scholar] [CrossRef]
- Yu, W.; Liu, R.; Wang, J.; Xu, F.; Shen, Z. Source Apportionment of PAHs in Surface Sediments Using Positive Matrix Factorization Combined with GIS for the Estuarine Area of the Yangtze River, China. Chemosphere 2015, 134, 263–271. [Google Scholar] [CrossRef]
- Manousakas, M.-I.; Papaefthymiou, H.; Diapouli, E.; Migliori, A.; Karydas, A.; Radovic, I.; Eleftheriadis, K. Assessment of PM2.5 Sources and Their Corresponding Level of Uncertainty in a Coastal Urban Area Using EPA PMF 5.0 Enhanced Diagnostics. Sci. Total Environ. 2017, 574, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.-Z.; Shi, G.-L.; Han, S.-Q.; Zhang, Y.-F.; Feng, Y.-C.; Liu, G.-R.; Gao, L.-J.; Wu, J.-H.; Zhu, T. Vertical Characteristics of Levels and Potential Sources of Water-Soluble Ions in PM10 in a Chinese Megacity. Sci. Total Environ. 2013, 447, 1–9. [Google Scholar] [CrossRef]
- Kim, E.; Hopke, P.K. Comparison between Sample-Species Specific Uncertainties and Estimated Uncertainties for the Source Apportionment of the Speciation Trends Network Data. Atmos. Environ. 2007, 41, 567–575. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Li, J.; Wu, J.; Wang, J. Source Apportionment of Trace Metals in River Sediments: A Comparison of Three Methods. Environ. Pollut. 2016, 211, 28–37. [Google Scholar] [CrossRef]
- Awadh, S.M. Cd, Ni, and Pb Distribution and Pollution Assessment in Roadside Dust from Baghdad City and Western Iraqi Desert. Arab. J. Geosci. 2015, 8, 315–323. [Google Scholar] [CrossRef]
- Han, L.; Gao, B.; Wei, X.; Xu, D.; Gao, L. Spatial Distribution, Health Risk Assessment, and Isotopic Composition of Lead Contamination of Street Dusts in Different Functional Areas of Beijing, China. Environ. Sci. Pollut. Res. Int. 2016, 23, 3247–3255. [Google Scholar] [CrossRef]
- Lin, C.; Yu, R.; Hu, G.; Yang, Q.; Wang, X. Contamination and Isotopic Composition of Pb and Sr in Offshore Surface Sediments from Jiulong River, Southeast China. Environ. Pollut. 2016, 218, 644–650. [Google Scholar] [CrossRef]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and Geo-Accumulation of Heavy Metals and Risk Assessment of Sediments of the Kurang Nallah—Feeding Tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2014, 470–471, 925–933. [Google Scholar] [CrossRef]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil Pollution Indices Conditioned by Medieval Metallurgical Activity—A Case Study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef]
- Pathak, A.K.; Kumar, R.; Kumar, P.; Yadav, S. Sources Apportionment and Spatio-Temporal Changes in Metal Pollution in Surface and Sub-Surface Soils of a Mixed Type Industrial Area in India. J. Geochem. Explor. 2015, 159, 169–177. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, Y.; Chen, H.; Zheng, G. Background concentrations of soil heavy metals in Beijing. Huan Jing Ke Xue 2004, 25, 117–122. [Google Scholar] [PubMed]
- Kusin, F.M.; Rahman, M.S.A.; Madzin, Z.; Jusop, S.; Mohamat-Yusuff, F.; Ariffin, M.; Md, Z.M.S. The Occurrence and Potential Ecological Risk Assessment of Bauxite Mine-Impacted Water and Sediments in Kuantan, Pahang, Malaysia. Environ. Sci. Pollut. Res. 2017, 24, 1306–1321. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Shi, Z.; Zhu, Y. Assessment and Mapping of Environmental Quality in Agricultural Soils of Zhejiang Province, China. J. Environ. Sci. 2007, 19, 50–54. [Google Scholar] [CrossRef]
- Müller, G. Index of Geo-Accumulation in Sediments of the Rhine River—ScienceOpen. Available online: https://www.scienceopen.com/document?vid=4b875795-5729-4c05-9813-64951e2ca488 (accessed on 1 April 2021).
- Buccolieri, A.; Buccolieri, G.; Cardellicchio, N.; Dell’Atti, A.; Di Leo, A.; Maci, A. Heavy Metals in Marine Sediments of Taranto Gulf (Ionian Sea, Southern Italy). Mar. Chem. 2006, 99, 227–235. [Google Scholar] [CrossRef]
- Li, R.; Cai, G.; Wang, J.; Ouyang, W.; Cheng, H.; Lin, C. Contents and Chemical Forms of Heavy Metals in School and Roadside Topsoils and Road-Surface Dust of Beijing. J. Soils Sediments 2014, 14, 1806–1817. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. Determination of Metal Accumulation in Deposited Street Dusts in Amman, Jordan. Environ. Geochem. Health 2007, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xia, D.; Liu, X.; Chen, F.; Yu, Y.; Yang, L.; Chen, J.; Zhou, A. Spatial and Temporal Variation in Magnetic Properties of Street Dust in Lanzhou City, China. Chin. Sci. Bull. 2008, 53, 1913–1923. [Google Scholar] [CrossRef] [Green Version]
- Christoforidis, A.; Stamatis, N. Heavy Metal Contamination in Street Dust and Roadside Soil along the Major National Road in Kavala’s Region, Greece. Geoderma 2009, 151, 257–263. [Google Scholar] [CrossRef]
- Li, H.-H.; Chen, L.-J.; Yu, L.; Guo, Z.-B.; Shan, C.-Q.; Lin, J.-Q.; Gu, Y.-G.; Yang, Z.-B.; Yang, Y.-X.; Shao, J.-R.; et al. Pollution Characteristics and Risk Assessment of Human Exposure to Oral Bioaccessibility of Heavy Metals via Urban Street Dusts from Different Functional Areas in Chengdu, China. Sci. Total Environ. 2017, 586, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Z.; Sun, X.; Shi, G.; Xu, S.; Wang, D.; Wang, L. Quantitative Spatial Characteristics and Environmental Risk of Toxic Heavy Metals in Urban Dusts of Shanghai, China. Environ. Earth Sci. 2009, 59, 645. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.A.; Najmeddin, A. Chemical Speciation, Human Health Risk Assessment and Pollution Level of Selected Heavy Metals in Urban Street Dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Škrbić, B.D.; Buljovčić, M.; Jovanović, G.; Antić, I. Seasonal, Spatial Variations and Risk Assessment of Heavy Elements in Street Dust from Novi Sad, Serbia. Chemosphere 2018, 205, 452–462. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate Statistical Analysis of Heavy Metals in Street Dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and Health Risk of Arsenic, Mercury and Other Metals in Urban Street Dusts from a Mega-City, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef]
- Huang, M.; Wang, W.; Chan, C.Y.; Cheung, K.C.; Man, Y.B.; Wang, X.; Wong, M.H. Contamination and Risk Assessment (Based on Bioaccessibility via Ingestion and Inhalation) of Metal(Loid)s in Outdoor and Indoor Particles from Urban Centers of Guangzhou, China. Sci. Total Environ. 2014, 479–480, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Giyasov, B.; Giyasova, I. The Impact of High-Rise Buildings on the Living Environment. E3S Web Conf. 2018, 33, 1045. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Tan, J. Atmospheric Heavy Metals and Arsenic in China: Situation, Sources and Control Policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Xu, X.; Qiu, J.; Chen, M.; Wang, D.; Guan, D.; Wang, C.; Wang, X.; Dong, B.; et al. Metals Compositions of Indoor PM2.5, Health Risk Assessment, and Birth Outcomes in Lanzhou, China. Environ. Monit. Assess. 2016, 188, 325. [Google Scholar] [CrossRef]
- Pardyjak, E.R.; Speckart, S.O.; Yin, F.; Veranth, J.M. Near Source Deposition of Vehicle Generated Fugitive Dust on Vegetation and Buildings: Model Development and Theory. Atmos. Environ. 2008, 42, 6442–6452. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and Chemical Patterns of PM10 in Road Dust Deposited in Urban Environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Guo, W.; Huo, S.; Ding, W. Historical Record of Human Impact in a Lake of Northern China: Magnetic Susceptibility, Nutrients, Heavy Metals and OCPs. Ecol. Indic. 2015, 57, 74–81. [Google Scholar] [CrossRef]
- Dong, H.; Lin, Z.; Wan, X.; Feng, L. Risk Assessment for the Mercury Polluted Site near a Pesticide Plant in Changsha, Hunan, China. Chemosphere 2016, 169, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Naderizadeh, Z.; Khademi, H.; Ayoubi, S. Biomonitoring of Atmospheric Heavy Metals Pollution Using Dust Deposited on Date Palm Leaves in Southwestern Iran. Atmósfera 2016, 29, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution Indices as Useful Tools for the Comprehensive Evaluation of the Degree of Soil Contamination–A Review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
Index | Category | Description |
---|---|---|
Geo-Accumulation Index (Igeo) [74,75] | Igeo < 0 | Unpolluted |
Igeo 0–1 | Unpolluted/moderately polluted | |
Igeo 1–2 | Moderately polluted | |
Igeo 2–3 | Moderately/strongly polluted | |
Igeo 3–4 | Strongly polluted | |
Igeo 4–5 | strongly/extremely polluted | |
Igeo > 5 | Extremely polluted | |
Ecological Risk Index (RI) [47] | Er ≤ 40; RI ≤ 150 | Low |
40 < Er ≤ 80; 150 < RI ≤ 300 | Moderate | |
80 < Er ≤ 160; 300 < RI ≤ 600 | Considerable | |
160 < Er ≤ 320; 600 < RI | High | |
Er > 320 | Extreme | |
Nemerow Pollution Index (PIN) [73] | PIN < 0.7 | Safe |
0.7 ≤ PIN < 1.0 | Precaution | |
1 ≤ PIN < 2 | Slightly Risk | |
2 ≤ PIN < 3 | Moderate Risk | |
PIN > 3 | Serious Risk |
Study Areas | Comparison | Cr | Ni | Cu | Zn | As | Cd | Pb | Hg |
---|---|---|---|---|---|---|---|---|---|
Zhengzhou, China | Background | 64 | 21 | 14 | 42 | 8 | 0.08 | 18 | 0.023 |
Min | 19.92 | 6.76 | 7.99 | 35.52 | 8.03 | 0.12 | 19.31 | 0.03 | |
Max | 94.78 | 28.23 | 63.25 | 1319.29 | 17.48 | 3.48 | 160.62 | 1.53 | |
Mean | 46.29 | 12.56 | 25.11 | 152.38 | 11.51 | 0.57 | 52.12 | 0.33 | |
Median | 40.96 | 12.38 | 22.08 | 113.44 | 11.10 | 0.44 | 43.16 | 0.14 | |
Reference Areas | Bangladesh, Dhaka | 144.34 | 37.01 | 49.68 | 239.16 | 8.09 | 11.64 | 18.99 | NA * |
China, Beijing | 92.1 | 32.47 | 83.12 | 280.65 | 4.88 | 0.59 | 60.88 | 0.16 | |
China, Beijing Park | 69.33 | 25.97 | 72.13 | 219.2 | NA * | 0.64 | 201.82 | NA * | |
China, Baoji | 126.7 | 48.8 | 123.2 | 715.3 | 19.8 | NA * | 433.2 | 1.1 | |
China, Chengdu | 84.3 | 24.4 | 100 | 296 | NA * | 1.66 | 82.3 | NA * | |
China, Guangzhou | 176.22 | 41.38 | 192.36 | 1777.18 | 20.05 | 2.14 | 387.53 | 0.22 | |
China, Guiyang | 129.04 | 60.43 | 129.33 | 176.05 | NA * | 0.61 | 63.12 | NA * | |
China, Nanjing | 126 | 55.9 | 123 | 394 | 13.4 | 1.1 | 103 | 0.12 | |
China, Shanghai | 157 | NA * | NA * | NA * | 8.73 | 1.24 | 246 | 0.16 | |
Greece, Kavala | 196 | 58 | 124 | 272 | 17 | 0.2 | 301 | 0.1 | |
India, Delhi | 57.70 | 24.70 | 99.90 | 200.70 | NA * | NA * | 164.20 | NA * | |
Iran, Ahvaz | 115.84 | NA * | 207.6 | 104.24 | 9.33 | 6.8 | 202.14 | NA * | |
Iran, Isfahan | 82.13 | 66.63 | 182.26 | 707.19 | 22.15 | 2.14 | 393.33 | NA * | |
Iran, Shiraz | 67.16 | 77.52 | 136.34 | 403.46 | 6.58 | 0.5 | 115.71 | 1.05 | |
Srilanka, Kandy | 103 | 87.6 | 123.6 | 1116.9 | NA * | 68.8 | 234.4 | NA * | |
Serbia, Novi Sad | 60.1 | 28.1 | 42.7 | NA * | 1.88 | 0.54 | 62.5 | NA * |
Land Use Areas | Cr | Ni | Cu | Zn | As | Cd | Pb | Hg |
---|---|---|---|---|---|---|---|---|
Educational (EA) | 43.275 | 13.9586 | 25.322 | 170.678 | 12.7263 | 1.03058 | 54.7109 | 0.20115 |
Industrial (IA) | 41.3082 | 10.85 | 18.64 | 87.80 | 10.81 | 0.35 | 58.67 | 0.28 |
Park and Leisure (PA) | 35.218 | 11.80 | 16.48 | 93.35 | 11.63 | 0.43 | 34.05 | 0.17 |
Commercial (CA) | 62.1785 | 13.45 | 34.79 | 223.46 | 11.04 | 0.52 | 63.12 | 0.46 |
Residential (RA) | 46.5189 | 12.42 | 28.02 | 166.15 | 11.38 | 0.57 | 53.84 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, M.; Wu, Z.; Wang, H.; Hussain, Z.; Shen, C. Geochemical Mapping, Risk Assessment, and Source Identification of Heavy Metals in Road Dust Using Positive Matrix Factorization (PMF). Atmosphere 2021, 12, 614. https://doi.org/10.3390/atmos12050614
Faisal M, Wu Z, Wang H, Hussain Z, Shen C. Geochemical Mapping, Risk Assessment, and Source Identification of Heavy Metals in Road Dust Using Positive Matrix Factorization (PMF). Atmosphere. 2021; 12(5):614. https://doi.org/10.3390/atmos12050614
Chicago/Turabian StyleFaisal, Muhammad, Zening Wu, Huiliang Wang, Zafar Hussain, and Chenyang Shen. 2021. "Geochemical Mapping, Risk Assessment, and Source Identification of Heavy Metals in Road Dust Using Positive Matrix Factorization (PMF)" Atmosphere 12, no. 5: 614. https://doi.org/10.3390/atmos12050614
APA StyleFaisal, M., Wu, Z., Wang, H., Hussain, Z., & Shen, C. (2021). Geochemical Mapping, Risk Assessment, and Source Identification of Heavy Metals in Road Dust Using Positive Matrix Factorization (PMF). Atmosphere, 12(5), 614. https://doi.org/10.3390/atmos12050614