A Spatio-Temporal Visualization Approach of PM10 Concentration Data in Metropolitan Lima
Abstract
:1. Introduction
2. Methods
2.1. Database
2.2. Preliminary Analysis
2.2.1. Data Imputation
2.2.2. Preliminary Visualization
2.3. Hypothesis
2.4. Verification
2.5. Application
3. Results and Discussion
3.1. Temporal Variation of PM
3.2. Detailed Analysis of the Station with the Highest Concentration of PM: HCH
3.2.1. Temperature and Relative Humidity
3.2.2. Wind Speed and Wind Direction
3.3. Spatial Variation of PM
3.3.1. Geolocated Wind Roses
3.3.2. Heat Maps
3.4. Hierarchical Clustering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AQI | Air Quality Index |
DIGESA | Dirección General de Salud Ambiental e Inocuidad Alimentaria |
ECA | Estándar de Calidad Ambiental |
EPA | Environmental Protection Agency |
INEI | Instituto Nacional de Estadística e Informática |
JICA | Japan International Cooperation Agency |
LA | Latin America |
LAC | Latin America and the Caribbean |
SENAMHI | Servicio Nacional de Meteorología e Hidrología |
WHO | World Health Organization |
Appendix A
References
- Salas, R.; Bustos, A. Constructing a NARX model for the prediction of the PM10 air pollutant concentration. In Proceedings of the Encuentro Chileno de Computación, Jornada Chilena de Ciencias de la Computación, Valdivia, Chile, 7–12 November 2005. [Google Scholar]
- Latorre, Á.M.L.R.; Tovar, M.H.T. Explotación minera y sus impactos ambientales y en salud. El caso de Potosí en Bogotá. Saúde Em Debate 2017, 41, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Chen, P. Visualization of real-time monitoring datagraphic of urban environmental quality. EURASIP J. Image Video Process. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
- Núñez Caraballo, V.; Rodríguez Rojas, R.; Gómez Camacho, L.; Herrera Moya, I.; Morales Pérez, M.C. Emisiones de dióxido de azufre a la atmósfera por fuentes fijas del MINAG y su influencia en la calidad del aire en la provincia de Villa Clara. Cent. Agrícola 2019, 46, 86–95. [Google Scholar]
- Rojano, R.E.; Mendoza, Y.I.; Arregoces, H.; Restrepo, G.M. Dispersión de Contaminantes del Aire (PM10, NO2, CO, COV y HAP) emitidos desde una Estación Modular de Compresión, Tratamiento y Medición de Gas Natural. Inf. Tecnológica 2016, 27, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Nurgazy, M.; Zaslavsky, A.; Jayaraman, P.P.; Kubler, S.; Mitra, K.; Saguna, S. CAVisAP: Context-aware visualization of outdoor air pollution with IoT platforms. In Proceedings of the 2019 International Conference on High Performance Computing & Simulation (HPCS), Dublin, Ireland, 15–19 July 2019; pp. 84–91. [Google Scholar]
- Park, Y.; Song, I.; Yi, J.; Yi, S.J.; Kim, S.Y. Web-Based Visualization of Scientific Research Findings: National-Scale Distribution of Air Pollution in South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia, V.; Carbajal, L.; Vásquez, V.; Espinoza, R.; Vásquez-Velásquez, C.; Steenland, K.; Gonzales, G.F. Traffic regulation and environmental pollution by particulate material (2.5 and 10), sulfur dioxide, and nitrogen dioxide in Metropolitan Lima, Peru. Rev. Peru. De Med. Exp. Y Salud Publica 2018, 35, 190. [Google Scholar] [CrossRef]
- Zeng, Y.R.; Chang, Y.S.; Fang, Y.H. Data Visualization for Air Quality Analysis on Bigdata Platform. In Proceedings of the 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019; pp. 313–317. [Google Scholar]
- EPA. Midiendo los Avances: La Dimensiǿn Ambiental de los OBJETIVOS de Desarrollo Sostenible en América Latina y el Caribe; Technical Report; PNUMA Programa de las Naciones Unidas para el Medio Ambiente: Nairobi, Kenya, 2020; p. 109.
- Sánchez, A.B.; Torres, B. Una Recuperación Verde y Justa en América Latina y el Caribe: Una Perspectiva Desde el Mundo; Technical Report; International Labour Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Riojas-Rodríguez, H.; da Silva, A.S.; Texcalac-Sangrador, J.L.; Moreno-Banda, G.L. Air pollution management and control in Latin America and the Caribbean: Implications for climate change. Rev. Panam. De Salud Pública 2016, 40, 150–159. [Google Scholar]
- Air, I.Q. 2019 World Air Quality Report; Technical Report; Index Quality Air; IQAir: Goldach, Switzerland, 2019; p. 25. [Google Scholar]
- Poma, J.M.R. Desarrollo de un Modelo Dinámico para determinar la incidencia de los factores contaminantes del aire en la población de Lima Metropolitana. Ind. Data 2012, 15, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Valverde, J. Estudio de la calidad del aire afectada por la actividad industrial en la urb. Primavera-distrito de El Agustino. Rev. Del Inst. De Investig. De La Fac. De Ing. Geológica Minera Metal. Y Geográfica 2016, 18, 115–119. [Google Scholar]
- Romero, Y.; Chicchon, N.; Duarte, F.; Noel, J.; Ratti, C.; Nyhan, M. Quantifying and spatial disaggregation of air pollution emissions from ground transportation in a developing country context: Case study for the Lima Metropolitan Area in Peru. Sci. Total Environ. 2020, 698, 134313. [Google Scholar] [CrossRef]
- Aramayo, A. Percepción de la contaminación atmosférica en Lima: Contraste entre la avenida Abancay y El Olivar de San Isidro. Rev. Del Inst. De Investig. De La Fac. De Geol. Minas Metal. Y Cienc. Geográficas 2012, 15, 131–140. [Google Scholar]
- Flores, E.C. Incidencia de la cuarentena por covid-19, en la calidad del aire (NO2) de la ciudad de Lima. Rev. Del Inst. De Investig. De La Fac. De Geol. Minas Metal. Y Cienc. Geográficas 2020, 23, 65–71. [Google Scholar]
- Suárez-Salas, L.; Álvarez Tolentino, D.; Bendezú, Y.; Pomalaya, J. Caracterización química del material particulado atmosférico del centro urbano de Huancayo, Perú. Rev. De La Soc. Química Del Perú 2017, 83, 187–199. [Google Scholar] [CrossRef]
- Valdivia, S.A.P. Análisis temporal y espacial de la calidad del aire determinado por material particulado PM10 y PM2, 5 en Lima Metropolitana. An. Científicos 2016, 77, 273–283. [Google Scholar] [CrossRef]
- JICA. Encuesta de Recolección de Información Básica del Transporte Urbano en el Área Metropolitana de Lima y Callao. Informe Final; Technical Report; Agencia de Cooperación Internacional del Japón: Tokyo, Japan, 2013; p. 27. [Google Scholar]
- Espinal, M.M. Transporte público de buses versus congestión y contaminación en Lima y Callao. Economía 2017, 40, 47–86. [Google Scholar] [CrossRef] [Green Version]
- MINAM. Diagnóstico de las Gestión de la Calidad Ambiental del Aire de Lima y Callao; Technical Report; Ministerio del Ambiente: Lima, Peru, 2019. [Google Scholar]
- Lu, W.; Ai, T.; Zhang, X.; He, Y. An interactive web mapping visualization of urban air quality monitoring data of China. Atmosphere 2017, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- Cat, J. Epistemology, aesthetics and pragmatics of scientific and other images: Visualization, representation and reasoning. In Fuzzy Pictures as Philosophical Problem and Scientific Practice; Springer: Berlin, Germany, 2017; pp. 47–67. [Google Scholar]
- San José, R.; Pérez, J.; González, R. Advances in 3D visualization of air quality data. Usage Usability Utili. 3D City Model. 2012, 02002. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Fan, H.; Mao, F. A visualization approach to air pollution data exploration—A case study of air quality index (PM2.5) in Beijing, China. Atmosphere 2016, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.; Rojas, J.; Norabuena, M.; Molina, C.; Toro, R.A.; Leiva-Guzmán, M.A. Particulate matter levels in a South American megacity: The metropolitan area of Lima-Callao, Peru. Environ. Monit. Assess. 2017, 189, 635. [Google Scholar] [CrossRef]
- Reátegui-Romero, W.; Sánchez-Ccoyllo, O.R.; de Fatima Andrade, M.; Moya-Alvarez, A. PM2.5 estimation with the WRF/Chem model, produced by vehicular flow in the lima metropolitan area. Open J. Air Pollut. 2018, 7, 215–243. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ccoyllo, O.R.; Ordoñez-Aquino, C.G.; Muñoz, Á.G.; Llacza, A.; Andrade, M.F.; Liu, Y.; Reátegui-Romero, W.; Brasseur, G. Modeling study of the particulate matter in lima with the WRF-Chem model: Case study of April 2016. Int. J. Appl. Eng. Res. IJAER 2018, 13, 10129. [Google Scholar] [CrossRef]
- Buuren, S.V.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2010, 45, 1–68. [Google Scholar] [CrossRef] [Green Version]
- Zhen, D.; Zhao, H.; Gu, F.; Ball, A. Phase-compensation-based dynamic time warping for fault diagnosis using the motor current signal. Meas. Sci. Technol. 2012, 23, 055601. [Google Scholar] [CrossRef] [Green Version]
- Aghabozorgi, S.; Seyed Shirkhorshidi, A.; Ying Wah, T. Time-series clustering—A decade review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Hebbrecht, K.; Stuivenga, M.; Birkenhäger, T.; Morrens, M.; Fried, E.; Sabbe, B.; Giltay, E. Understanding personalized dynamics to inform precision medicine: A dynamic time warp analysis of 255 depressed inpatients. BMC Med. 2020, 18, 400. [Google Scholar] [CrossRef] [PubMed]
- EPA. National Ambient Air Quality Standards for Particulate Matter; Technical Report; Environmental Protection Agency: Washington, DC, USA, 2013; 78, p. 202.
- Vinasco, J.P.S.; Nastar, T.d.R.C. Variación espacial y temporal de concentraciones de PM10 en el área urbana de Santiago de Cali, Colombia. Ing. De Recur. Nat. Y Del Ambiente 2013, 12, 129–141. [Google Scholar]
- Tránsito de Vehículos a Nivel Nacional Aumentó 15.5%. 2018. Available online: https://n9.cl/b769 (accessed on 14 December 2020).
- Jiménez, A.M.; Méndez, D.; Torrecilla, R.C. La concentración de partículas en el aire: Análisis estadístico de la relación espacial entre medidas de superficie y del sensor MODIS para dos tipos de tiempo en la Comunidad de Madrid. Investig. Geográficas 2020, 73, 189–209. [Google Scholar] [CrossRef]
- Guzmán, A.A.E.; Tzuc, O.M.; Pantí, I.B.; Trujeque, J.R.; Quintana, I.V.P.; Bassam, A. Artificial neural network modeling of PM10 and PM2.5 in a tropical climate region: San Francisco de Campeche, Mexico. Química Nova 2017, 40, 1025–1034. [Google Scholar]
- Delgado-Villanueva, A.; Aguirre-Loayza, A. Modelamiento y evaluación del nivel de calidad del aire mediante el análisis de grey clustering, estudio de caso Lima metropolitana. Tecnia 2020, 30, 114–120. [Google Scholar] [CrossRef]
- Zegarra-Peña, R.; Andrade-Tenesaca, S.; Parra-Ullauri, M.; Mejía-Coronel, D.; Rodas-Espinoza, C. Análisis espacial de PM10 en el aire y su composición de metales con relación a factores ambientales alrededor de centros de educación preescolar en Cuenca. Maskana 2020, 11, 57–68. [Google Scholar] [CrossRef]
- Sulandari, W.; Suhartono; Subanar; Rodrigues, P.C. Exponential Smoothing on Modeling and Forecasting Multiple Seasonal Time Series: An Overview. Fluct. Noise Lett. 2021, 2130003. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; Mahmoudvand, R. The benefits of multivariate singular spectrum analysis over the univariate version. J. Frankl. Inst. 2018, 355, 544–564. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; Pimentel, J.; Messala, P.; Kazemi, M. The decomposition and forecasting of mutual investment funds using singular spectrum analysis. Entropy 2020, 22, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awe, O.O.; Mahmoudvand, R.; Rodrigues, P.C. Non-Negative Time Series Reconstruction via Singular Spectrum Analysis: A Case Study of Precipitation Dynamics in Nigeria. Fluct. Noise Lett. 2020, 19, 2050045. [Google Scholar] [CrossRef]
- Sulandari, W.; Subanar; Lee, M.H.; Rodrigues, P.C. Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks. Energy 2020, 190, 116408. [Google Scholar] [CrossRef]
- Sulandari, W.; Subanar, S.; Suhartono, S.; Utami, H.; Lee, M.H.; Rodrigues, P.C. SSA-based hybrid forecasting models and applications. Bull. Electr. Eng. Inform. 2020, 9, 2178–2188. [Google Scholar] [CrossRef]
- Sulandari, W.; Subanar, S.; Lee, M.H.; Rodrigues, P.C. Time series forecasting using singular spectrum analysis, fuzzy systems and neural networks. MethodsX 2020, 7, 101015. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; Awe, O.O.; Sousa, J.; Mahmoudvand, R. Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks. Stats 2020, 3, 137–157. [Google Scholar] [CrossRef]
Stations | Min. | Max. | 1st Qu. | 3rd Qu. | Median | Mean ± DS | Var. | Skew. | Kurt. |
---|---|---|---|---|---|---|---|---|---|
CRB | 5.44 | 488.02 | 31.49 | 58.45 | 198.31 | 48.69 ± 28.39 | 806.03 | 3.24 | 22.27 |
SMP | 7.77 | 426.80 | 61.95 | 105.10 | 142.50 | 86.05 ± 35.73 | 1276.41 | 1.00 | 2.86 |
CDM | 6.08 | 463.60 | 35.84 | 63.45 | 145.50 | 52.30 ± 24.61 | 605.54 | 2.30 | 18.25 |
ATE | 6.41 | 931.00 | 82.90 | 148.00 | 421.90 | 121.56 ± 60.30 | 3635.75 | 2.08 | 11.07 |
HCH | 5.21 | 974.00 | 62.10 | 176.50 | 138.40 | 130.03 ± 91.68 | 8404.34 | 1.53 | 4.89 |
Category | PM (g/m) 24-h | AQI | Color |
---|---|---|---|
Good | 0–54 | 0–50 | Green |
Moderate | 55–154 | 51–100 | Yellow |
Unhealthy for sensitive groups | 155–254 | 101–150 | Orange |
Unhealthy | 255–354 | 151–200 | Red |
Very Unhealthy | 355–424 | 201–300 | Purple |
Hazardous | 425–604 | 301–400 | Sangria |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encalada-Malca, A.A.; Cochachi-Bustamante, J.D.; Rodrigues, P.C.; Salas, R.; López-Gonzales, J.L. A Spatio-Temporal Visualization Approach of PM10 Concentration Data in Metropolitan Lima. Atmosphere 2021, 12, 609. https://doi.org/10.3390/atmos12050609
Encalada-Malca AA, Cochachi-Bustamante JD, Rodrigues PC, Salas R, López-Gonzales JL. A Spatio-Temporal Visualization Approach of PM10 Concentration Data in Metropolitan Lima. Atmosphere. 2021; 12(5):609. https://doi.org/10.3390/atmos12050609
Chicago/Turabian StyleEncalada-Malca, Alexandra Abigail, Javier David Cochachi-Bustamante, Paulo Canas Rodrigues, Rodrigo Salas, and Javier Linkolk López-Gonzales. 2021. "A Spatio-Temporal Visualization Approach of PM10 Concentration Data in Metropolitan Lima" Atmosphere 12, no. 5: 609. https://doi.org/10.3390/atmos12050609
APA StyleEncalada-Malca, A. A., Cochachi-Bustamante, J. D., Rodrigues, P. C., Salas, R., & López-Gonzales, J. L. (2021). A Spatio-Temporal Visualization Approach of PM10 Concentration Data in Metropolitan Lima. Atmosphere, 12(5), 609. https://doi.org/10.3390/atmos12050609