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Abstract: Lima is considered one of the cities with the highest air pollution in Latin America.
Institutions such as DIGESA, PROTRANSPORTE and SENAMHI are in charge of permanently
monitoring air quality; therefore, the air quality visualization system must manage large amounts
of data of different concentrations. In this study, a spatio-temporal visualization approach was
developed for the exploration of data of the PM10 concentration in Metropolitan Lima, where the
spatial behavior, at different time scales, of hourly concentrations of PM10 are analyzed using basic
and specialized charts. The results show that the stations located to the east side of the metropolitan
area had the highest concentrations, in contrast to the stations located in the center and north
that reported better air quality. According to the temporal variation, the station with the highest
average of biannual and annual PM10 was the HCH station. The highest PM10 concentrations were
registered in 2018, during the summer, highlighting the month of March with daily averages that
reached 435 µg/m3. During the study period, the CRB was the station that recorded the lowest
concentrations and the only one that met the Environmental Quality Standard for air quality. The
proposed approach exposes a sequence of steps for the elaboration of charts with increasingly specific
time periods according to their relevance, and a statistical analysis, such as the dynamic temporal
correlation, that allows to obtain a detailed visualization of the spatio-temporal variations of PM10

concentrations. Furthermore, it was concluded that the meteorological variables do not indicate
a causal relationship with respect to PM10 levels, but rather that the concentrations of particulate
material are related to the urban characteristics of each district.

Keywords: air quality; PM10; spatio-temporal visualization; particulate matter; dynamic time
warping

1. Introduction

Emissions released into the atmosphere alter its composition and affect air quality,
causing significant repercussions in areas such as the environment and health. Air pollution
is linked to the presence of substances that reach concentrations higher than their normal
environments [1], causing an ecological imbalance [2]. These episodes produce potentially
harmful problems for human health, animals and vegetation. In urban places, most
of the contamination is generated by emissions from automobiles and industries [1,3].
These emissions have an environmental impact due to the transport of pollutants, even to
great distances from the emission points, due to the action of the wind and other factors
such as turbulence [4,5], which is why affected sectors are not exclusively industrial [6].
According to epidemiological studies, one of the main risk factors for the global burden
of mortality and morbidity is air pollution [7]. It is estimated that in the coming decades
it could become the largest environmental cause of premature death [8], for which global
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mitigation policies have been implemented by deploying devices that control air quality
on a daily basis in their territories [9].

In Latin America (LA) there is a high rate of urbanization, comprising 72% of the popu-
lation [8]. The main causes of air pollution in the cities of Latin America and the Caribbean
(LAC) are land transportation, electricity generation and industrial production [10,11].

During the 2010-2014 period, most of the official air quality monitoring stations in
seventeen LAC countries recorded mean annual PM10 values significantly higher than the
limit of 20 µg/m3 established in guidelines of the World Health Organization (WHO) [12].
According to the 2019 World Air Quality Report, nine of the twelve considered LAC
countries reported an annual mean of PM2.5 higher than the threshold established by the
WHO, with Chile and Peru being the countries with the highest average annual exposure
to pollution [13].

Peru is a highly urban country, reporting a higher density in Lima, considered one of
the most polluted cities in LA [8]. The Department (second-level administrative subdivi-
sions of Peru) of Lima is located on the central coast; it has a humid climate and a geography
characterized by the Andes that reach the seashore at high altitudes. Its main source of air
pollution is transportation units, as well as stationary sources such as industries, shops,
and restaurants [14–16]. In some areas the levels of air pollution are very high due to the
traffic congestion of public transport, which mostly use diesel fuel, are old and do not have
adequate maintenance [17,18]. Likewise, it is one of the cities with the highest frequency of
asthma in children, caused by particulate matter from emissions from the vehicle fleet [19].

The minimum values of PM10 during the period 2001–2014 were recorded on Sundays,
coinciding with the decrease in anthropogenic activities and the flow of vehicular transport
that occurs on those days [20]. In a report by the Japan International Cooperation Agency
(JICA), it was stated that, in 2012, the number of trips made per day in motorized vehicles
in Lima was 16.9 million [21]. Over the years, this number has increased, increasing also
the vehicle gas emissions [8]. Several strategies were implemented, such as the elimination
of lead, gasoline and the reduction of the sulfur content in diesel, that serve to mitigate
this problem [22]. The permanent monitoring of air quality is done by institutions such as
DIGESA, PROTRANSPORTE and SENAMHI [23].

In this sense, monitoring combined with other objective evaluation techniques helps
to fully define and understand the exposure of the population to the environment [6].
The visual visualization of the data takes a dynamic approach compared to raw data
tables, and provides detailed information on data structure [24], ensuring that the results
are directly transmitted to the general public [9]. This technique can transform data into
intuitive graphical images, showing efficient visual analysis of air quality data, thereby
determining the location of sources of pollution and assessing which areas are more affected,
in order to take necessary actions for improvement [3]. The air quality display system
must handle large amounts of spatial data of the different concentrations. In addition,
they must be viewed in an agile way to detect trends, correlations and alterations in air
pollution [25,26], becoming a solution that allows complex data to be simplified and better
understood for timely decision-making [27].

In Metropolitan Lima, studies such as those by Valdivia [20] and Silva et al. [28] have
applied air quality data visualization techniques in periods between 2001 to 2014 and
2010 to 2015, respectively. Likewise, studies such as those of Reátegui-Romero et al. [29]
and Sánchez-Ccoyllo et al. [30] have applied particulate matter estimation techniques in
Metropolitan Lima. These modeling techniques allow complementing the application of
air quality data visualization.

This article proposes a spatio-temporal visualization approach to explore PM10 con-
centration data in the Metropolitan Lima area, through graphs with increasingly specific
time periods (year, month, day, hour) according to their relevance and statistical analy-
sis for better interpretation. This will allow to obtain a complete, realistic and detailed
visualization of the concentrations and spatio-temporal variations of PM10.
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2. Methods

The proposed methodology is based on the study developed by Li et al. [27] for the
exploration of air pollution data, and has been adapted to the PM10 concentration data in
Metropolitan Lima. The workflow includes five steps that start with access to the database,
then its preliminary analysis in step 2, from which the hypotheses of step 3 are formulated,
which are verified in step 4, with the application and visualization conducted in step
5. In addition, the proposed approach for each of the steps and their work schemes are
described in the following subsections.

2.1. Database

The first step of the workflow consists of data access and storage. The data comprises
a period of 2 years (from 1 January 2017 to 31 December 2018); and includes time series
(year, month, day, hour) of PM10 concentration (µg/m3 ), temperature (ºC), humidity (%),
wind speed (m/s) and wind direction; coming from 5 air quality monitoring stations of
the “Servicio Nacional de Meteorología e Hidrología” (SENAMHI): Ate (ATE), Jesús María
(CDM), Carabayllo (CRB), Huachipa (HCH) and San Martín de Porres (SMP). The geo-
graphical distribution of the stations is presented in Figure 1, being two stations located in
North Lima, two stations located in East Lima and one station located in Center Lima.

Figure 1. Geo-spatial locations of the five monitoring stations: Ate (ATE), Jesús María (CDM),
Carabayllo (CRB), Huachipa (HCH) and San Martín de Porres (SMP).

2.2. Preliminary Analysis

The preliminary analysis aimed at performing the cleaning of the data and imputation
of missing values, as well as a general report with basic plots such as heat tables, line
and bar charts. The main findings of this stage give an important contribution to better
understand patterns in the data and to contribute to decision-making.

2.2.1. Data Imputation

The imputation of the missing data was done with the R package MICE, where
multiple imputation was considered by using the Fully Conditionally Specification [31].
The imputation was done for each variable separately and, for the variables under study
(PM10, temperature, relative humidity and wind speed), predictive mean matching was
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used, a semi-parametric and versatile method that focuses on continuous data, which
allows the imputed values to coincide with any of the observed values in each variable,
that is, it will not produce imputations outside the range of observed data. The percentages
of missing data was between 12% and 27%. Other stations with much higher percentages
of missing values were not considered.

2.2.2. Preliminary Visualization

Line and bar charts together with heat tables were used for preliminary visualizations
to better understand the behavior of the data.

Figure 2 presents the sequence of steps developed for the preliminary visualization
of the data. The first step is the data exploration, which consists in the identification of
the existing variables of the original data. In the second step, the variables were analysed
to decide the types of plots to be generated. In that sense, variables such as: latitude,
longitude, day of the week, hour, season of the year and concentration level were added and
organized. For this study it was considered that the seasons of the year in Lima are: summer
(22 December to 21 March), fall (22 March to 21 June), winter (22 June to 22 September)
and spring (23 September to 21 December). In the third step, the charts are designed and
obtained from the most general to the most specific. Six types of graphs are presented
for all-station PM10 concentration data, eleven types of graphs for single-station PM10
concentration data, and four types of graphs for data for each meteorological variable per
station. For the graphs of meteorological variables, a smaller quantity has been considered,
taking into account that their main variations are seasonal and hourly; these graphs also
include the behavior of the recorded PM10 concentrations, in order to obtain a visualization
with respect to the meteorology. This approach proposes several types of graphs and with
increasingly specific time periods, to better observe the most critical values at different time-
scales. Likewise, this type of approach allows to focus on the highest recorded values and
analyze their possible causes and/or consequences. Steps 4 and 5 of Figure 2 correspond
to the selection of graphs, their analysis and interpretation. The selected plots depend on
the user and the objective of the analysis.

2.3. Hypothesis

The preliminary analysis describes the important findings obtained from the basic
plots. Some of these findings need to be verified, by considering specific hypotheses.
Three hypotheses were raised: The first, regarding PM10 concentrations, proposes that the
stations present an optimal coincidence between the time series. The second affirms that
the meteorological variables have a causal/correlational relationship with respect to PM10
concentrations. Finally, the third hypothesis, based on the detailed analysis of the station
with the highest concentration of PM10: HCH, suggests that there is a positive correlation
between temperature and PM10 concentration at the HCH station.

2.4. Verification

The hypotheses are verified through visual analytics, using scatter charts, boxplots
and graphs from statistical analysis using the Dynamic Time Warping (DTW) algorithm.
The latter allows to optimally align two time series [32]. In addition, clustering analysis is
useful for detecting similar patterns in the data that comprises multiple time series [33,34].
The DTW uses a dynamic programming approach that compresses the two time series to
minimize the difference between them as much as possible, thus ensuring that the two
time series are ordered through a deformation path [35].

Geo-located wind roses, considering the direction and speed of the wind, were also
generated to complement the results. Finally, geo-visualization charts were used to repre-
sent the spatial distribution of the air pollution data.
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Figure 2. Proposal for a preliminary analysis of the data visualization from the air quality monitoring stations in Metropolitan
Lima. The proposal is developed in five steps that range from the exploration of the data to the analysis and description of
the plots.

2.5. Application

The applications of the study are based in a descriptive analysis and visualization.
In this last block, the relevant findings of steps 2 and 4 are considered, as well as the
subsequent analysis that will complement the study according to the approach. It is impor-
tant to consider that, for the application, it can be linked with other systems, providing a
basis for a comprehensive model of a phenomenon. The proposed methodology has been
applied in the spatio-temporal visualization of the air quality data of Metropolitan Lima.
Likewise, this approach could also be extrapolated to other large cities.

3. Results and Discussion

Initially, descriptive analysis of the data were carried out, covering the period between
1 January 2017 and 31 December 2018, with five monitoring stations for PM10. Table 1 shows
the descriptive statistics for each station, showing an asymmetry in the data. In this sense,
both the histograms and the boxplots, showed in Figures 3 and 4, represent the best option
for visualizing PM10 asymmetry, allowing to evaluate the behavior in each monitoring



Atmosphere 2021, 12, 609 6 of 18

station. Meanwhile, the PM10 pollutant has a heavy-tailed probability distribution (positive
asymmetry), which is evidenced by the appearance of high-pollution observations.

Table 1. Summary statistics - Stations of Monitoring PM10.

Stations Min. Max. 1st Qu. 3rd Qu. Median Mean ± DS Var. Skew. Kurt.

CRB 5.44 488.02 31.49 58.45 198.31 48.69 ± 28.39 806.03 3.24 22.27
SMP 7.77 426.80 61.95 105.10 142.50 86.05 ± 35.73 1276.41 1.00 2.86
CDM 6.08 463.60 35.84 63.45 145.50 52.30 ± 24.61 605.54 2.30 18.25
ATE 6.41 931.00 82.90 148.00 421.90 121.56 ± 60.30 3635.75 2.08 11.07
HCH 5.21 974.00 62.10 176.50 138.40 130.03 ± 91.68 8404.34 1.53 4.89
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Figure 3. Histogram of PM10 for each station. The stations with the highest skewness are CRB, CDM and ATE, showing an
heavy tail towards the right with respect to the mean of PM10.
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Figure 4. Boxplots for PM10 in each station.

3.1. Temporal Variation of PM10

Figures 5–7 show the temporal visualisation of PM10 concentration. For a more specific
analysis, the cases in which the concentration levels were higher, have been considered.
Figure 5, shows the behavior of the data in the five stations. Figure 5a shows the overall av-
erages of the PM10 concentrations (from 1 January 2017 to 31 December 2018). In this period,
all the stations exceed the limits proposed by the WHO for the maximum concentrations of
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PM10 in a year. In addition, all stations, except for CRB, exceed the annual arithmetic mean
of PM10 established in the ECA. Figure 5b compares the annual averages of PM10 for 2017
and 2018 in each station. In this figure it is visible that the difference between the values
from one year to another does not exceed 10 µg/m3 in all stations. However, the annual
average of PM10 in 2017 from the CRB station exceeds the concentration established in the
ECA for annual average compared to that is shown in Figure 5a. In Figure 5c, the categories
of Air Quality Index (AQI) from Table 2 were considered, being the percentage of hourly
concentrations during the study period shown in the bar chart for each of the categories
by station.

Table 2. Breakpoints for the Air Quality Index—AQI [36].

Category PM10 (µg/m3) 24-h AQI Color

Good 0–54 0–50 Green
Moderate 55–154 51–100 Yellow
Unhealthy for sensitive groups 155–254 101–150 Orange
Unhealthy 255–354 151–200 Red
Very Unhealthy 355–424 201–300 Purple
Hazardous 425–604 301–400 Sangria

Figure 5. (a) Average of the PM10 concentrations in the period that extends from 1 January 2017
to 31 December 2018. The horizontal lines represent the limit values for annual averages of PM10

proposed in the ECA in Peru and by the WHO. (b) Distribution of the annual averages concentration
of PM10 by station. The vertical lines represent the limit values for annual averages of PM10 proposed
in the ECA and by the WHO. (c) Distribution of PM10 concentration levels by station.
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Figure 6. (a) Monthly comparison of PM10 concentration in the period 2017–2018 for the HCH station. (b) Daily variation of
PM10 concentration per month in the year 2018 for the HCH station. (c) 2018 heat table at the HCH station. (d) Hourly
variation of the PM10 concentration per month in 2018 for the HCH station.

The HCH station records the highest percentages of data in the categories: Unhealthy
for sensitive people (22.96%), unhealthy (6.64%), very unhealthy (1.46%) and hazardous
(0.98%); these percentages are equivalent to 4022, 1164, 255 and 171 observations/hours of
PM10 concentration, respectively, of a total of 17,520 observations.

According to the analysis of the multiannual hourly variation of PM10 for the monitor-
ing stations in summer, fall, winter and spring, the highest concentrations of PM10 were
recorded during the summer. In the summer, HCH and ATE are the stations that recorded
the highest PM10 concentration values; in the case of HCH, 100% of its values exceed the
ECA in a range of 124–203 µg/m3. In the period 2010–2015 it was also during the summer
that the highest concentrations were recorded in Metropolitan Lima [28]. During the period
2007–2014, the ATE station was also one of the stations that registered the highest values
of PM10 in Metropolitan Lima during the summer months; while, for that same period,
CDM was one of the stations that recorded the lowest PM10 values during all seasons of
the year [20].



Atmosphere 2021, 12, 609 9 of 18

Figure 7. (a) Distribution of PM10 concentration by day in March 2018. (b) Distribution of PM10

concentration by episodes in March 2018. (c) Classification of PM10 concentration by episodes in
14 March 2018.

3.2. Detailed Analysis of the Station with the Highest Concentration of PM10: HCH

According to the information in Figure 5, the highest concentrations of PM10 are
observed at the HCH station. Therefore this station was chosen for a more detailed temporal
analysis that is presented in this section. In this sense, Figure 6 shows the monthly, daily
and hourly variation plots of the HCH station.

According to Figure 6a, the two months with the highest average concentrations
during the study period for the HCH station were March and April of the year 2018, while
the months of June, July and August in both years reported the lowest concentrations.

Since the highest values were reported in 2018, Figure 6b–d focus on this year. Based
on Figure 6b it can be seen that the lowest concentrations are recorded on Sundays and
Mondays, for most months. These results are comparable to those reported for Cali, Colom-
bia [37] where PM10 concentrations increased from Monday to Saturday and decreased on
Sunday when traffic flow in the city also decreased notably.
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According to Figure 6d the hourly concentrations of PM10 behave in a varied way in
each of the months of 2018. Only in the months of June, July and August a similar behavior
can be observed that indicates lower values during the early morning, which rise until
reaching a peak between 11:00 and 14:00.

In Figure 6c it ca be seen that March is the only month in which the concentrations
reached values within the EPA categories “very unhealthy” and “hazardous”, highlighting
the 14th day, with a mean of 435.2 µg/m3. Only 33.15% of the daily concentrations of PM10
registered during 2018 in the station HCH correspond to values lower than 100 µg/m3,
established by the ECA for daily means.

Figure 7 shows the variation of the PM10 concentration during the month of March,
which, according to Figure 6 is the month that registered the highest values in 2018.
Figure 7a shows an increase in the concentrations between the 9th and the 17th day of the
month, with a maximum peak on the 14th. This may be due to the fact that the beginning
of the school year, which represents an increase in traffic, was on March 12th. According to
the Instituto Nacional de Estadística e Informática (National Statistical Institute of Peru),
the national index of vehicular that flow through toll booths in March 2018 had an increase
of 15.5% when compared to March in 2017 [38].

Figure 7b shows that the highest PM10 concentration during March was at night for
three consecutive days: March 12th, 13th and 14th. On the other hand, in more than 80%
of the days the early morning had the lowest PM10 values. Finally, Figure 7c shows that
March 14 begins with very high PM10 concentrations between 0:00 and 1:00 in the morning.
It should be noted that all hourly concentrations during March 14 exceed 170 µg/m3, which
indicates that all values are considered by the EPA in the categories unhealthy for sensitive
people, unhealthy, very unhealthy or hazardous.

3.2.1. Temperature and Relative Humidity

In the summer of 2018 in the HCH station, the highest concentrations of PM10 and the
highest temperatures were reached during the early morning, a low percentage of relative
humidity was also recorded during that same time. Meanwhile, during the afternoon as
the temperature decreases, the percentage of relative humidity increases and the levels of
particulate matter decrease considerably.

As expected, in 2017 and 2018 the highest monthly temperature averages were
recorded during the summer months and the lowest during the winter months.

PM10 concentrations could be influenced by the temperature, because higher tem-
peratures increase photochemical activity, consequently, the decomposition of matter and
an increase of PM10 values [39]. Also, the high temperatures allow the re-suspension of
particulate material for long periods in the atmosphere [40]. On the other hand, relative
humidity influences the sedimentation of particulate matter at ground level, making it
more difficult to transport it in the air [37].

When analyzing the monthly averages of particulate material, it is observed that
during the entire study period in the HCH station, concentrations higher than the ECA
and WHO for daily averages were recorded. Figure 8a,b shows that the months with lower
temperatures (June to October) favor the increase in relative humidity shown in Figure 8c,d,
which could be related to the decrease in the levels of particulate material in the months
under study.

The monthly averages of PM10 and temperature during 2018 in the HCH station show
a strong positive Pearson correlation of 0.9, and a strong negative Pearson correlation
between PM10 and relative humidity of −0.93 with . This does not imply a direct causality
between the two meteorological variables and PM10 concentrations, because the increase in
PM10 is also influenced by urban behavior events (e.g., industries and the automotive fleet).

3.2.2. Wind Speed and Wind Direction

Figure 9 shows the variation of wind speed and direction during the four episodes
(parts of the day) in March 2018 for the HCH station. It is observed that the direction and
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predominant speed of the wind varies during the day: in the early morning it takes the west
direction with speeds of up to 6 m/s, and to a lesser percentage the southwest direction
with speed up to 6 m/s; in the morning the predominant direction is the southwest,
with winds up to 5.1 m/s; at afternoon, the southwest direction also prevails but with wind
speeds up to 4.1 m/s. Finally, during the night, the predominant direction is the southwest
with speed up to 5.1 m/s.

Figure 8. Monthly distribution of PM10 concentration and temperature in year (a) 2017 and (b) 2018 at
the HCH station. Monthly distribution of PM10 concentration and relative humidity in year (c) 2017
and (d) 2018 at the HCH station.

3.3. Spatial Variation of PM10

The intensity of the wind is greater in the fall from dawn until the night, being the
lowest speed recorded between night and the next morning. Summer shows ups and
downs in terms of wind intensities throughout the day, with a decrease in wind speed
more noticeable during the afternoon and showing an increase during the early morning.
During the winter, the greatest intensity is registered at noon and goes until sunset, with a
decrease at night. Spring presents a similar behavior to the winter, with the greatest
intensity being registered from noon until sunset, and when night falls, it diminishes
until dawn.

3.3.1. Geolocated Wind Roses

The geolocated wind roses, reported in Figure 10, show the direction and speed of
the wind. These graphs allow to complement the interpretation of the variation of PM10
in the Metropolitan Lima stations in 2018. It can be seen that the ATE, CDM, HCH and
SMP stations present the same prevailing wind directions throughout the year, as well as
similar ranges of wind speed in those directions. In contrast, for the CRB station, during the
summer and fall the wind directions are more varied than in winter and spring. The CDM
and CRB stations present the lowest concentrations of PM10, with similar values throughout
the year; the wind roses show a similar behavior in both stations. In the case of the CDM
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station, the predominant direction of the wind is the southwest, which carries winds from
the Pacific Ocean allowing the dispersion of pollutants in the air. For the CRB station,
the highest wind speed is predominantly northwest during the four seasons of the year,
which also come from the Pacific Ocean. On the other hand, the stations located east of
Metropolitan Lima show the highest concentrations of PM10, which may be related to
the fact that both stations present a predominance of southwest winds from the districts
located in the center of Metropolitan Lima throughout the year. An important factor to
consider is that winds from the Pacific Ocean allow the dispersion of pollutants in the air;
and in the case of the CRB station, the winds with the highest speed are predominantly
northwest, i.e., from the Pacific Ocean during the whole year.

3.3.2. Heat Maps

Figure 11 shows the monthly heat maps for 2018. The stations located east of Metropoli-
tan Lima (HCH and ATE) present the highest concentrations, in contrast, the stations
located in the center (CDM) and north (SMP and CRB) have the lowest concentrations.
This result coincide with the work of Delgado-Villanueva and Aguirre-Loayza [41], where
the stations located to the east are classified as of very poor quality, while the stations in
the center and south are described as of good quality.

Figure A1 shows that the stations with lower air quality are close to hills and high
traffic roads such as the Ramiro Prialé highway, detailed in Figure A1a and central highway
in Figure A1b. In addition, its surrounding streets are not paved, which influences the
increase in the concentration of the levels of particulate matter [20]. In contrast, the stations
in Figure A1c,d,f are those that register the least pollution and have green areas nearby;
these influence the reduction of the temperature, thus increasing the relative humidity [42].

Figure 9. Wind roses by episodes:(a) early morning, (b) morning, (c) afternoon and (d) night in
March 2018.
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Figure 10. Geolocated wind roses of five air quality monitoring stations for each season in (a) summer,
(b) fall, (c) winter, (d) spring of the year 2018.

JANUARY FEBRUARY MARCH APRIL

MAY JUNE JULY AUGUST

SEPTEMBER OCTOBER NOVEMBER DECEMBER

GOOD MODERATE UNHEALTHY FOR
SENSITIVE GROUPS

0 – 54 µg /m3 55 – 154 µg /m3 155– 254 µg /m 3

Figure 11. Heat maps with the monthly averages of PM10 concentration in 2018 for each monitor-
ing station.

3.4. Hierarchical Clustering

Figure 12 shows the hierarchical tree (dendrogram) considering PM10 and the three
meteorological variables, temperature, relative humidity and wind speed, for the five
monitoring stations. Aiming at clustering time series, instead of data with independent
observations and a standard Euclidean distance, we considered distances based on the
dynamic time warping (DTW) algorithm, to obtain the dendrogram. In this way, a non-
linear optimal alignment between each two time series is considered, instead of a point-
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by-point distance. This dynamic correlational analysis between the different time series
generated differentiable clusters, such as those made up of the same meteorological variable,
which indicate that the distance between the meteorological data is minimal in the five
stations of Metropolitan Lima. Likewise, it is observed that the wind speed is closer to
the temperature than to the relative humidity. The CDM and CRB stations present the
least distance in their PM10 behaviour in comparison to the other monitoring stations;
both register the lowest concentrations of particulate matter, and they have a smaller
distance with the relative humidity group than SMP. Finally, the two groups that show
the least relationship between their PM10 behaviour and the other variables are HCH and
ATE, both stations report the highest concentrations of particulate material throughout the
study period.
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Figure 12. Plot hierarchical clustering dendrogram of meteorological variables and PM10 of the five
monitoring stations as a result of the dynamic correlational analysis between the different time series.
The generation of distinguishable clusters such as those made up of the same meteorological variable
is observed.

4. Conclusions

The proposed method of a spatial-temporal visualization for the exploration of PM10
concentration data in Metropolitan Lima offers details in the analysis of the pollutant, allow-
ing to identify the high concentrations registered in the study period. This would not have
been possible if we had been used only plots with annual, monthly or seasonal averages.

According to the spatial distribution, the two stations located to the east of Metropoli-
tan Lima (HCH and ATE) and one station located to the north (SMP) registered the highest
average concentrations of PM10 during the study period. In the case of HCH and ATE, both
stations are located near hills, high-traffic roads and unpaved streets. While the monitoring
station located in the center (CDM) and one of the monitoring stations in the north (CRB)
registered lower PM10 concentrations than the rest of the monitoring stations, both stations
also have green areas around and predominant wind directions from the Pacific Ocean.
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In relation to the temporal variation, the station with the highest average of biannual
and annual PM10 was HCH. The highest PM10 concentrations were recorded in 2018,
during the summer, highlighting the month of March with daily averages that reached up
to 435 µg/m3. In March 2018, the PM10 values increased from the 9th to the 17th, with a
maximum peak on the 14th, which is likely to be related to the start of the school year on
March 12. In 2018 only 33.15% of the daily PM10 concentrations were lower than the ECA
(100 µg/m3).

In 2018, the HCH station had a high positive correlation between the monthly average
of PM10 and temperature, while the correlation was very low when applied on an hourly
scale. This indicates that the relationship between the variables occurs with a time shift.

The closest relationships in the hierarchical cluster analysis occur between the meteo-
rological variables indicating minimum distances between temperature, relative humidity
and wind speed of the Metropolitan Lima stations; however, the behavior is different with
the variable PM10 in the five stations. The meteorological variables do not indicate a causal
relationship with respect to PM10, but the concentrations of particulate matter would be
more related to the urban characteristics of each district.

Previous studies about air quality data visualization in Metropolitan Lima [20,28] do
not present a detailed step-by-step methodology to carry out a spatio-temporal visualiza-
tion approach. The proposal developed in this paper, in addition to being specific in the
approach to visualization, also presents adequate statistical techniques for the analysis
of the time series related to environmental pollution. These analysis have a dynamic
peculiarity in time, which allows us to better understand the different series in different
monitoring stations in different time periods.

In terms of time series modelling and forecasting, further research should be conducted
for this data set. Standard time series models such as exponential smoothing [43], as well as
techniques such as the non-parametric singular spectrum analysis [44,45], relevant adapta-
tions for non-negative time series (see, for instance, [46]), and hybrid methods [47–50], that
have proven its usefulness in other areas and/or other data sets can be used to improve
the understanding of this data and to conduct forecasting that can help with decision and
policy making.

This approach will open bridges between the agencies in charge of monitoring air
quality. Likewise, it will allow proposing policies in favor of caring for the environment,
in order to mitigate air pollution. In addition, it opens the gate for future research in
this field, extrapolating this proposal to other cities to facilitate analysis and improve
decision-making at the local and national level.
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LA Latin America
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Appendix A

Figure A1. Satellite view of the monitoring stations (a) HCH, (b) ATE, (c) CDM, (d) CDM overlooking
the Pacific Ocean, (e) SMP and (f) CRB.
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