Evaluation of the Perspective of ERA-Interim and ERA5 Reanalyses for Calculation of Drought Indicators for Uzbekistan
Abstract
:1. Introduction
2. Data and Method
2.1. Study Domain
2.2. Observational and Reanalysis Data
2.2.1. Observations
2.2.2. ERA-5 and ERA-I Reanalyses
2.2.3. Comparison Method
3. Results
3.1. Comparison with Field Observations
3.2. Comparison with the Cadaster
3.3. Comparison Using SPEI
3.4. Assessment of Variability of Meteorological Parameters for the Period 1981–2018
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Meteorological Organization. Drought Monitoring and Early Warning: Concepts, Progress and Future Challenges; World Meteorological Organization: Geneva, Switzerland, 2006. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Liu, Y.; Geng, X.; Hao, Z.; Zheng, J. Changes in Climate Extremes in Central Asia under 1.5 and 2 ºC Global Warming and their Impacts on Agricultural Productions. Atmosphere 2020, 11, 1076. [Google Scholar] [CrossRef]
- Pollner, J.; Kryspin-Watson, J.; Nieuwejaar, S. Disaster Risk Management and Climate Change Adaptation in Europe and Central Asia; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Uzbekistan Climate Change and Agriculture Country Note Climate Change Exposure and Risk for Uzbekistan 2010. Available online: www.worldbank.org/eca/climateandagriculture (accessed on 21 December 2020).
- Third National Communication of the Republic of Uzbekistan under the UN Framework Convention on Climate Change. PREPARED in the Framework of Project GEF/UNEP/Uzhydromet ‘Uzbekistan: Preparation of the Third National Communication of the Republic of Uzbekistan under the UN Framework Convention on Climate Change, Tashkent, 2016. Available online: https://unfccc.int/sites/default/files/resource/TNC of Uzbekistan under UNFCCC_english_n.pdf (accessed on 21 December 2020).
- Chub, V.E. Climate Change and Its Impact on Hydrometeorological Processes, Agroclimatic and Water Resources of the Republic of Uzbekistan; Uzhydromet: Tashkent, Uzbekistan, 2007. (in Russian) [Google Scholar]
- IPCC. IPCC Special Report on the Impacts of Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Sutton, W.R.; Srivastava, J.P.; Neumann, J.E.; Droogers, P.; Boehlert, B. Reducing the Vulnerability of Uzbekistan’s Agricultural Systems to Climate Change: Impact Assessment and Adaption Options; World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Bergman, J.W.; Fierli, F.; Jensen, E.J.; Honomichl, S.; Pan, L.L. Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit. J. Geophys. Res. Atmos. 2013, 118, 2560–2575. [Google Scholar] [CrossRef]
- Decker, M.; Brunke, M.A.; Wang, Z.; Sakaguchi, K.; Zeng, X.; Bosilovich, M.G. Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations. J. Clim. 2012, 25, 1916–1944. [Google Scholar] [CrossRef]
- Simmons, A.J.; Jones, P.D.; Bechtold, V.D.C.; Beljaars, A.C.M.; Kållberg, P.W.; Saarinen, S.; Uppala, S.M.; Viterbo, P.; Wedi, N. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Lindsay, R.; Wensnahan, M.; Schweiger, A.; Zhang, J. Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic. J. Clim. 2014, 27, 2588–2606. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Ge, F.; Yang, K.; Zhu, S.; Peng, T.; Cai, W.; Liu, X.; Tang, W. Assessment of ECMWF reanalysis data in complex terrain: Can the CERA-20C and ERA-Interim data sets replicate the variation in surface air temperatures over Sichuan, China? Int. J. Clim. 2019, 39, 5619–5634. [Google Scholar] [CrossRef]
- Martins, D.S.; Paredes, P.; Raziei, T.; Pires, C.; Cadima, J.; Pereira, L.S. Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula. Int. J. Clim. 2017, 37, 2378–2397. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Zhang, W. Evaluation of Satellite and Reanalysis Precipitable Water Vapor Data Sets Against Radiosonde Observations in Central Asia. Earth Space Sci. 2019, 6, 1129–1148. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E. The NCEP_NCAR 40-year reanalysis project. 1996.pdf. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Harada, Y.; Kamahori, H.; Kobayashi, C.; Endo, H.; Kobayashi, S.; Ota, Y.; Onoda, H.; Onogi, K.; Miyaoka, K.; Takahashi, K. The JRA-55 Reanalysis: Representation of Atmospheric Circulation and Climate Variability. J. Meteorol. Soc. Jpn. 2016, 94, 269–302. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Gelaro, R.; Mccarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Mamadjanova, G.; Wild, S.; Walz, M.A.; Leckebusch, G.C. The role of synoptic processes in mudflow formation in the piedmont areas of Uzbekistan. Nat. Hazards Earth Syst. Sci. 2018, 18, 2893–2919. [Google Scholar] [CrossRef] [Green Version]
- Lioubimtseva, E. Arid environments. In Physical Geography of Northern Eurasia; Shahgedanova, M., Ed.; Oxford University Press: Oxford, UK, 2002; pp. 267–283. [Google Scholar]
- Khamzina, T.; Khasankhanova, G.; Denisova, E.; Ibragimov, R. Climate Change Vulnerability Assessment of Agriculture and Water Resources in Uzbekistan to Inform Decision-Making; Uzhydromet: Tashkent, Uzbekistan, 2021. (in Russian) [Google Scholar]
- Regional report #3 Draft regional policy, strategy, and action program for water and salt management. In Water and Environmental Management Project i Sub-Component A1; Royal Haskoning: Amersfoort, The Netherlands, 2003.
- Simmons, A.; Uppala, S.; Dee, D.; Kobayashi, S. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl. 2007, 110, 25–36. [Google Scholar]
- Available online: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (accessed on 20 April 2021).
- Hersbach, H. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- Babushkin, L.N. Regarding climatic characteristics of summer atmospheric drought and hot dry winds in the cotton region of Uzbekistan. In Hot Dry Winds, Their Origin and Control; SANIGMI: Tashkent, Uzbekistan, 1974; pp. 59–64. (in Russian) [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig-Gracia, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Clim. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H. Defining and Using Reference Evapotranspiration. J. Irrig. Drain. Eng. 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating Reference Evapotranspiration under Inaccurate Data Conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [Green Version]
- Konings, A.G.; Williams, A.P.; Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 2017, 10, 284–288. [Google Scholar] [CrossRef]
- Restaino, C.M.; Peterson, D.L.; Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 9557–9562. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Roberts, M.J.; Schlenker, W.; Braun, N.; Little, B.B.; Rejesus, R.M.; Hammer, G.L. Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest. Science 2014, 344, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 1996. [Google Scholar] [CrossRef]
# | Regions | Administrative Provinces | River Basin |
---|---|---|---|
1 | FV | Andijan, Namangan, Fergana | Syrdarya |
2 | MCS | Jizzakh, Syrdarya, Tashkent | |
3 | SZ | Kashkadarya, Surkhandarya | Amudarya |
4 | MCA | Bukhara, Navoi, Samarkand | |
5 | LCA | Karakalpakstan, Khorezm |
Parameter | Mean | SD | ||||
---|---|---|---|---|---|---|
Obs. | ERA-I | ERA-5 | Obs. | ERA-I | ERA-5 | |
T, °C | 13.54 | 11.96 | 12.92 | 10.38 | 10.30 | 10.93 |
Tmax, °C | 27.91 | 24.77 | 25.87 | 10.29 | 10.24 | 10.92 |
RH, % | 58.36 | 58.27 | 54.64 | 15.96 | 15.17 | 15.28 |
SH, g/kg | 7.60 | 5.72 | 5.35 | 3.43 | 2.31 | 2.10 |
TP, mm | 27.89 | 17.07 | 20.65 | 36.72 | 18.55 | 23.54 |
Parameter | Correlation | Mean Error | SD | |||
---|---|---|---|---|---|---|
ERA-I | ERA-5 | ERA-I | ERA-5 | ERA-I | ERA-5 | |
T, °C | 0.97 | 0.98 | −1.57 | −0.62 | 2.60 | 2.25 |
Tmax, °C | 0.95 | 0.96 | −3.14 | −2.04 | 3.37 | 2.98 |
RH, % | 0.85 | 0.87 | −0.08 | −3.72 | 9.57 | 9.60 |
SH, g/kg | 0.85 | 0.88 | −1.88 | −2.24 | 1.88 | 1.88 |
TP, mm | 0.56 | 0.80 | −10.82 | −7.24 | 30.39 | 22.61 |
VPD, hPa | 50–60 | 60–70 | 70–80 | >80 |
---|---|---|---|---|
Drought strength | weak | medium | strong | very strong |
Parameter | Number of Sites | Mean Number, Days | Correlation Coefficient (Inventory—ERA-5) | |
---|---|---|---|---|
Cadastre | ERA-5 | |||
Number of days with VDP ≥50 hPa | 34 | 27.97 | 28.46 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhmatova, N.; Arushanov, M.; Shardakova, L.; Nishonov, B.; Taryannikova, R.; Rakhmatova, V.; Belikov, D.A. Evaluation of the Perspective of ERA-Interim and ERA5 Reanalyses for Calculation of Drought Indicators for Uzbekistan. Atmosphere 2021, 12, 527. https://doi.org/10.3390/atmos12050527
Rakhmatova N, Arushanov M, Shardakova L, Nishonov B, Taryannikova R, Rakhmatova V, Belikov DA. Evaluation of the Perspective of ERA-Interim and ERA5 Reanalyses for Calculation of Drought Indicators for Uzbekistan. Atmosphere. 2021; 12(5):527. https://doi.org/10.3390/atmos12050527
Chicago/Turabian StyleRakhmatova, Natella, Mikhail Arushanov, Lyudmila Shardakova, Bakhriddin Nishonov, Raisa Taryannikova, Valeriya Rakhmatova, and Dmitry A. Belikov. 2021. "Evaluation of the Perspective of ERA-Interim and ERA5 Reanalyses for Calculation of Drought Indicators for Uzbekistan" Atmosphere 12, no. 5: 527. https://doi.org/10.3390/atmos12050527
APA StyleRakhmatova, N., Arushanov, M., Shardakova, L., Nishonov, B., Taryannikova, R., Rakhmatova, V., & Belikov, D. A. (2021). Evaluation of the Perspective of ERA-Interim and ERA5 Reanalyses for Calculation of Drought Indicators for Uzbekistan. Atmosphere, 12(5), 527. https://doi.org/10.3390/atmos12050527