Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Summer Hourly Precipitation
3.1.1. Diurnal Variation
3.1.2. Precipitation Probability and Proportion
3.2. Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation
3.2.1. Vertical Structure of Temperature
3.2.2. Vertical Structure of Humidity
3.2.3. Vertical Structure of Horizontal Wind
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, B.; Li, J.J. Qinghai Tibetan Plateau: A driver and amplifier of the global climatic change III: The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes. Lanzhou Univ. J. Nat. Sci. Ed. 1996, 32, 108–115. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, S.L.; Tao, S.Y.; Zhang, Q.Y. Large and meso-α scale characteristics of intense rainfall in the mid- and lower reaches of the Yangtze River. Chin. Sci. Bull. 2002, 47, 779–786. (In Chinese) [Google Scholar] [CrossRef]
- Wu, G.X.; Liu, Y.M.; Liu, X. How the Heating over the Tibetan Plateau affects the Asian climate in summer. J. Atmos. Sci. 2005, 29, 47–56. (In Chinese) [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Wang, S.; He, K. Precursory Signals (SST and Soil Moisture) of Summer Surface Temperature Anomalies over the Tibetan Plateau. Atmosphere 2021, 12, 146. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, L.X. The climatic characteristics of the atmospheric heat source of the Qinghai-Tibet Plateau in the past 35 years and its relationship with precipitation in China. Sci. China (Ser. D) 2001, 31, 327–332. (In Chinese) [Google Scholar]
- Xu, X.D.; Zhao, T.L.; Shi, X.F. A study of the role of the Tibetan Plateau’s thermal forcing in modulating rainband and moisture transport in eastern China. Acta. Meteor. Sin. 2015, 73, 20–35. (In Chinese) [Google Scholar] [CrossRef]
- Yao, X.P.; Zhang, S.; Yan, L.Z. Research progress on the atmospheric heat source over the Tibetan Plateau and its influence. Trans. Atmos. Sci. 2019, 42, 641–651. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.F.; Li, C.H.; Yang, J.Y.; Wang, S.M.; Fu, M.; Yi, L. Research progress on east-moving cloud clusters from the Qinghai-Tibet Plateau. Torrential Rain Disasters 2020, 39, 433–441. (In Chinese) [Google Scholar] [CrossRef]
- Zhuo, G.; Xu, X.D.; Chen, L.S. Instability of eastward movement and development of convective cloud clusters over Tibetan Plateau. J. Appl. Meteor. Sci. 2002, 13, 447–456. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, Y.G.; Wu, G.X.; Liu, Y.M. Dynamical and thermal problems in vortex development and movement. Part I: A PV-Q view. Acta. Meteor. Sin. 2013, 71, 185–197. (In Chinese) [Google Scholar] [CrossRef]
- Ma, T.; Liu, Y.M.; Wu, G.X. Effect of potential vorticity on the formation, development, and eastward movement of a Tibetan Plateau vortex and its influence on downstream precipitation. Chin. J. Atmos. Sci. 2020, 44, 472–486. (In Chinese) [Google Scholar] [CrossRef]
- Xu, X.D.; Chen, L.S. Advances of the study on Tibetan Plateau experiment of atmospheric sciences. J. Appl. Meteor. Sci. 2006, 17, 756–771. (In Chinese) [Google Scholar]
- Duan, A.M.; Wu, G.X.; Liu, Y.M.; Ma, Y.M.; Zhao, P. Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci. 2012, 29, 978–992. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; et al. The Third Atmospheric Scientific Experiment for American meteorological society understanding the earth-atmosphere coupled system over the Tibetan plateau and its effects. Bull. Amer. Meteor. Soc. 2018, 99, 757–776. [Google Scholar] [CrossRef]
- Zhao, P.; Li, Y.Q.; Guo, X.L.; Xu, X.D.; Liu, Y.M.; Tang, S.H.; Xiao, W.M.; Shi, C.X.; Ma, Y.M.; Yu, X.H.; et al. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The Third Tibetan Plateau Atmospheric Science Experiment. J. Meteor. Res. 2019, 33, 375–399. [Google Scholar] [CrossRef]
- Yu, R.; Li, J. Regional characteristics of diurnal peak phases of precipitation over contiguous China. Acta. Meteor. Sin. 2016, 74, 18–30. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.Q.; Xu, X.D. A review of the research and observing experiment on Southwest China Vortex. Adv. Meteor. Sci. Technol. 2016, 6, 134–140. (In Chinese) [Google Scholar] [CrossRef]
- Lu, P.; Li, Y.Q. Analyses of the boundary layer characteristics by intensive sounding observation data at Jiulong station in summer for 9 years. Plateau Meteor. 2020, 39, 1058–1069. (In Chinese) [Google Scholar] [CrossRef]
- Steiner, M.; Houze, J.R.; Yuter, S.E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Gong, Y.D.; Chen, J.; Tian, F.Y. Warm-Season diurnal variations of total, stratiform, convective, and extreme hourly precipitation over Central and Eastern China. Adv. Atmos. Sci. 2019, 36, 143–159. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Zhou, T. Seasonal variation of the diurnal cycle of rainfall in the southern contiguous China. J. Clim. 2008, 21, 6036–6043. [Google Scholar] [CrossRef]
- Singh, P.; Nakamura, K. Diurnal variation in summer precipitation over the central Tibetan Plateau. J. Geophys. Res. 2009, 114, D20107. [Google Scholar] [CrossRef]
- Yu, Y.; Wan, R.; Zhang, W.G.; Zhou, W. Comparative analysis of vertical structure of the atmosphere before and after heavy rainfall in mountain and plain. Torrential Rain Disasters 2020, 39, 354–362. (In Chinese) [Google Scholar] [CrossRef]
- Li, G.P. Dynamic Meteorology of the Tibetan Plateau; Meteorology Press: Beijing, China, 2002. [Google Scholar]
- Xu, G.R.; Zhang, W.G.; Wan, X.B.; Wang, L.; Leng, L.; Zhou, L.; Wan, R. Analysis on atmospheric profiles retrieved from microwave radiometer observation at Ganzi in the eastern Qinghai-Tibet Plateau. Torrential Rain Disasters 2019, 38, 238–248. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.J.; Jin, L.L.; He, Q.; Miao, Q.L.; Li, M.M. Characteristics of specific humidity distribution and profiles in Urumqi City and suburbs. Arid Zone Res. 2020, 43, 977996. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.L.; Hong, Z.X.; Sun, S.F. An observational experiment on the atmospheric boundary layer in Gerze area of the Tibetan Plateau. Chin. J. Atmos. Sci. 2000, 24, 301–311. (In Chinese) [Google Scholar] [CrossRef]
- Li, G.P. Progress and prospects in research of mountain meteorology in China during the past 25 years. Adv. Meteor. Sci. Technol. 2016, 6, 115–122. (In Chinese) [Google Scholar] [CrossRef]
- Jia, C.H.; Dou, J.J.; Miao, S.G.; Wang, Y.C. Analysis of characteristics of mountain-valley winds in the complex terrain area over Yanging Zhangjiakou in the winter. Acta. Meteor. Sinica. 2019, 77, 475–488. (In Chinese) [Google Scholar] [CrossRef]
- Wan, X.; Xu, G.; Wan, R.; Wang, B.; Ren, J.; Luo, C. Vertical structure of non-precipitation cloud obtained from cloud radar observation at Ganzi in the eastern Qinghai-Tibet Plateau. Torrential Rain Disasters 2020, 39, 496–504. (In Chinese) [Google Scholar] [CrossRef]
- Xu, G.; Cui, C.; Li, W.; Zhang, W.; Feng, G. Variation of GPS precipitable water over the Qinghai-Tibet Plateau: Possible teleconnection triggering rainfall over the Yangtze River Valley. Terr. Atmos. Ocean. Sci. 2011, 22, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.Y.; Qian, F.L.; Chen, Z.; Li, S.M.; Su, L.R.; Xu, X.D.; Chen, L.S.; Liu, J.C.; Xi, Z.; Zhu, D. The characteristics of the profiles for wind, temperature and humidity in the baroclinic convective boundary layer on Xizang plateau. J. Geophys. 2002, 45, 818–830. [Google Scholar] [CrossRef]
- Luo, B.; Zhuo, G.; Yang, X.H. The atmospheric characteristics in the early period of east Asian monsoon in Gaize Tibet. Plateau Mt. Meteorol. Res. 2009, 29, 1–5. (In Chinese) [Google Scholar] [CrossRef]
Launch time/LST | 0 mm | [0.1, 0.5) mm | [0.5, 1) mm | [1, 5) mm | [5, 10) mm |
---|---|---|---|---|---|
02 | 180 | 15 | 3 | 2 | 2 |
08 | 227 | 10 | 5 | 0 | 0 |
14 | 269 | 13 | 2 | 0 | 0 |
20 | 191 | 15 | 5 | 10 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Xu, G.; Wan, R.; Wang, X.; Wang, J.; Li, P. Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau. Atmosphere 2021, 12, 505. https://doi.org/10.3390/atmos12040505
Tang Y, Xu G, Wan R, Wang X, Wang J, Li P. Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau. Atmosphere. 2021; 12(4):505. https://doi.org/10.3390/atmos12040505
Chicago/Turabian StyleTang, Yonglan, Guirong Xu, Rong Wan, Xiaofang Wang, Junchao Wang, and Ping Li. 2021. "Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau" Atmosphere 12, no. 4: 505. https://doi.org/10.3390/atmos12040505
APA StyleTang, Y., Xu, G., Wan, R., Wang, X., Wang, J., & Li, P. (2021). Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau. Atmosphere, 12(4), 505. https://doi.org/10.3390/atmos12040505