Large Eddy Simulation of Microphysics and Influencing Factors in Shallow Convective Clouds
Abstract
:1. Introduction
2. Observation Data and Model Setup
2.1. Observation Data: SCMS95
2.2. Model Setup: WRF-LES and SBM Scheme
3. Methods
3.1. Methods for Calculating Cloud Physical and Microphysical Properties
3.2. Method for Normalizing Variables
4. Results and Discussions
4.1. Comparison of Simulations and Observations
4.2. Cloud Physics Properties
4.3. Effects of Standard Deviation and Mean Radius on Relative Dispersion
4.4. Effects of Vertical Velocity and Entrainment on Relative Dispersion
5. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takemi, T.; Hirayama, O.; Liu, C. Factors responsible for the vertical development of tropical oceanic cumulus convection. Geophys. Res. Lett. 2004, 31, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Yanai, M.; Johnson, R.H. Impacts of cumulus convection on thermodynamic fields. In The Representation of Cumulus Convection in Numerical Models; Springer: New York, NY, USA, 1993; pp. 39–62. [Google Scholar]
- Li, Y.; Zhang, M. The role of shallow convection over the Tibetan plateau. J. Clim. 2017, 30, 5791–5803. [Google Scholar] [CrossRef]
- Nuijens, L.; Stevens, B.; Siebesma, A.P. The environment of precipitating shallow cumulus convection. J. Atmos. Sci. 2009, 66, 1962–1979. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, Q.; Ma, Z. Influences of shallow convective process and boundary-layer clouds on cloud forecast in GRAPES Global Model. Meteorol. Mon. 2015, 41, 921–931. [Google Scholar]
- Zhang, F.; Wu, K.; Li, J.; Zhang, H.; Hu, S. Radiative transfer in the region with solar and infrared spectra overlap. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 366–378. [Google Scholar] [CrossRef]
- Betts, A.K. A new convective adjustment scheme. Part. I: Observational and theoretical basis. Q. J. R. Meteorol. Soc. 1986, 112, 677–691. [Google Scholar]
- Tiedtke, M.; Heckley, W.; Slingo, J. Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Q. J. R. Meteorol. Soc. 1988, 114, 639–664. [Google Scholar] [CrossRef]
- Lord, S.J.; Chao, W.C.; Arakawa, A. Interaction of a cumulus cloud ensemble with the large-scale environment. Part. IV: The discrete model. J. Atmos. Sci. 1982, 39, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Sakradzija, M.; Seifert, A.; Dipankar, A. A stochastic scale-aware parameterization of shallow cumulus convection across the convective gray zone. J. Adv. Model. Earth Syst. 2016, 8, 786–812. [Google Scholar] [CrossRef]
- Pergaud, J.; Masson, V.; Malardel, S.; Couvreux, F. A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound. Layer Meteorol. 2009, 132, 83. [Google Scholar] [CrossRef]
- Luo, S.; Lu, C.; Guo, X.; Li, Y.; Xue, S. Numerical simulation of the effects of entrainment-mixing on cloud droplet size distributions and microphysical properties over the Tibetan Plateau. China Sci. Pap. 2017, 12, 972–977. [Google Scholar]
- Lei, H.; Hong, Y.; Zhao, Z.; Xiao, H.; Guo, X. Advances in cloud and precipitation physics and weather modification in recent years. Chin. J. Atmos. Sci. 2008, 32, 967–974. [Google Scholar]
- Haynes, J.M.; Stephens, G.L. Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C.; Li, W. Skewness of cloud droplet spectrum and an improved estimation for its relative dispersion. Meteorol. Atmos. Phys. 2017, 129, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Zhao, C.; Qin, Y. Impact of cloud droplets spectral uncertainty on mesoscale precipitation. J. Trop. Meteorol. 2005, 21, 605–614. [Google Scholar]
- Yum, S.S.; Hudson, J.G. Adiabatic predictions and observations of cloud droplet spectral broadness. Atmos. Res. 2005, 73, 203–223. [Google Scholar] [CrossRef]
- Zhao, C.; Tie, X.; Brasseur, G.; Noone, K.J.; Nakajima, T.; Zhang, Q.; Zhang, R.; Huang, M.; Duan, Y.; Li, G.; et al. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Pawlowska, H.; Grabowski, W.W.; Brenguier, J.L. Observations of the width of cloud droplet spectra in stratocumulus. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhao, L.; Dong, X. A case study of stratus cloud properties using in situ aircraft observations over Huanghua, China. Atmosphere 2019, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Liu, Y.; Yum, S.S.; Chen, J.; Zhu, L.; Gao, S.; Yin, Y.; Jia, X.; Wang, Y. Reconciling contrasting relationships between relative dispersion and volume-mean radius of cloud droplet size distributions. J. Geophys. Res. Atmos. 2020, 125, e2019JD031868. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, C.; Gao, S.; Soo, Y.S. Spectral width of cloud droplet spectra and its impact factors in marine stratocumulus. Chin. J. Atmos. Sci. 2020, 44, 575–590. [Google Scholar]
- Liu, Y.; Daum, P.H. Anthropogenic aerosols: Indirect warming effect from dispersion forcing. Nature 2002, 419, 580. [Google Scholar] [CrossRef]
- Liu, Y.; Daum, P.H.; McGraw, R.L. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, H.; Liu, X.; Peng, Y.; Liu, Y. Sensitivity study of cloud parameterizations with relative dispersion in CAM5. 1: Impacts on aerosol indirect effects. Atmos. Chem. Phys. 2017, 17, 5877–5892. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.I.; Liu, X.I.; Peng, Y.; Wang, Y.I.; Yue, Z.; Li, X.I. Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion. Tellus B Chem. Phys. Meteorol. 2013, 65, 19054. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.S.; Liu, Y.G.; Niu, S.J.; Xue, Y. Broadening of cloud droplet size distributions and warm rain initiation associated with turbulence: An overview. Atmos. Ocean. Sci. Lett. 2018, 11, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Thara, P.; Patade, S.; Pandithurai, G.; Khain, A.; Axisa, D.; Kumar, P.; Maheshkumar, R.S.; Kulkarni, J.R.; Goswami, B.N. Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley. J. Geophys. Res. 2012, 117, D20205. [Google Scholar]
- Anil Kumar, V.; Pandithurai, G.; Leena, P.P. Investigation of aerosol indirect effects on monsoon clouds using ground-based measurements over a high-altitude site in Western Ghats. Atmos. Chem. Phys. 2016, 16, 8423–8430. [Google Scholar] [CrossRef] [Green Version]
- Pandithurai, G.; Dipu, S.; Prabha, T.V.; Maheskumar, R.S.; Kulkarni, J.R.; Goswami, B.N. Aerosol effect on droplet spectral dispersion in warm continental cumuli. J. Geophys. Res. 2012, 117, D16202. [Google Scholar] [CrossRef]
- Chandrakar, K.K.; Cantrell, W.; Chang, K.; Ciochetto, D.; Yang, F. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA 2016, 113, 14243. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Chen, Y.; Wang, W.; Yan, P.; Liu, H. Strong air pollution causes widespread haze-clouds over China. J. Geophys. Res. Atmos. 2010, 155, D18204. [Google Scholar] [CrossRef]
- Desai, N.; Glienke, S.; Fugal, J.; Shaw, R.A. Search for microphysical signatures of stochastic condensation in marine boundary layer clouds using airborne digital holography. J. Geophys. Res. Atmos. 2019, 124, 2739–2752. [Google Scholar] [CrossRef]
- Weckwerth, T.; Horst, T.; Wilson, J. An observational study of the evolution of horizontal convective rolls. Mon. Weather Rev. 1999, 127, 2160–2179. [Google Scholar] [CrossRef]
- Rodts, S.M.A.; Peter, G.D.; Harm, J.J. Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci. 2003, 60, 1895–1912. [Google Scholar] [CrossRef]
- Neggers, R.; Duynkerke, P.; Rodts, S. Shallow cumulus convection: A validation of large-eddy simulation against aircraft and Landsat observations. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2003, 129, 2671–2696. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.R. The sensitivity of large-eddy simulations of shallow cumulus convection to resolution and subgrid model. Q. J. R. Meteorol. Soc. 1999, 125, 469–482. [Google Scholar] [CrossRef]
- Dawe, J.T.; Austin, P.H. Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm. Atmos. Chem. Phys. 2012, 12, 101–1119. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Xue, H.; Teller, A.; Feingold, G.; Levin, Z. Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Austin, P.H. Life cycle of numerically simulated shallow cumulus clouds. Part. I: Transport. J. Atmos. Sci. 2005, 62, 1269–1290. [Google Scholar] [CrossRef]
- Zhao, M.; Austin, P.H. Life cycle of numerically simulated shallow cumulus clouds. Part. II: Mixing dynamics. J. Atmos. Sci. 2005, 62, 1291–1310. [Google Scholar] [CrossRef]
- Xu, X.; Xue, H. Impacts of free-tropospheric temperature and humidity on nocturnal nonprecipitating marine stratocumulus. J. Atmos. Sci. 2015, 72, 2853–2864. [Google Scholar] [CrossRef]
- Moeng, C.; Dudhia, J.; Klemp, J.; Sullivan, P. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Weather Rev. 2007, 135, 2295–2311. [Google Scholar] [CrossRef]
- von Salzen, K.; McFarlane, N.A. Parameterization of the bulk effects of lateral and cloud-top entrainment in transient shallow cumulus clouds. J. Atmos. Sci. 2002, 59, 1405–1430. [Google Scholar] [CrossRef] [Green Version]
- Bretherton, C.S.; Park, S. A new bulk shallow-cumulus model and implications for penetrative entrainment feedback on updraft buoyancy. J. Atmos. Sci. 2008, 65, 2174–2193. [Google Scholar] [CrossRef]
- Slawinska, J.; Grabowski, W.W.; Pawlowska, H.; Wyszogrodzki, A.A. Optical properties of shallow convective clouds diagnosed from a bulk-microphysics large-eddy simulation. J. Clim. 2008, 21, 1639–1647. [Google Scholar] [CrossRef]
- Seifert, A.; Khain, A.; Pokrovsky, A.; Beheng, K.D. A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics. Atmos. Res. 2006, 80, 46–66. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakajima, T.; Nakajima, T.Y.; Khain, A.P. A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. J. Atmos. Sci. 2010, 67, 1126–1141. [Google Scholar] [CrossRef]
- Lynn, B.; Khain, A. Utilization of spectral bin microphysics and bulk parameterization schemes to simulate the cloud structure and precipitation in a mesoscale rain event. J. Geophys. Res. Atmos. 2007, 112, D22205S. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Ovtchinnikov, M.; Comstock, J.M.; McFarlane, S.A.; Khain, A. Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res. Atmos. 2009, 114, D04205. [Google Scholar] [CrossRef]
- Khain, A.; Leung, L.; Lynn, B.; Ghan, S. Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res. Atmos. 2009, 114, D22203. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF version 3 [cited 2008 June]. NCAR Tech. Note 2008. [Google Scholar] [CrossRef]
- Wang, W.; Bruyère, C.; Duda, M.; Dudhia, J.; Gill, D.; Kavulich, M.; Keene, K.; Chen, M.; Lin, H.-C.; Michalakes, J.; et al. User’s Guide for the Advanced Research WRF (ARW) Modeling System Version 3.9. 2017 [cited 2017 April 17]. Available online: https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/user_guide_V3.9/contents.html (accessed on 11 April 2021).
- Seifert, A.; Heus, T. Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. 2013, 13, 5631–5645. [Google Scholar] [CrossRef] [Green Version]
- Matheou, G.; Chung, D.; Nuijens, L.; Stevens, B.; Teixeira, J. On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Weather Rev. 2011, 139, 2918–2939. [Google Scholar] [CrossRef]
- Sommeria, G.; Deardorff, J.W. Subgrid-Scale Condensation in Models of Nonprecipitating Clouds. J. Atmos. Sci. 1977, 34, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Sun, C.; Liu, Y.; Zhang, G.J.; Lin, Y.; Gao, W.; Niu, S.; Yin, Y.; Qiu, Y.; Jin, L. Observational relationship between entrainment rate and environmental relative humidity and implications for convection parameterization. Geophys. Res. Lett. 2018, 45, 13–495. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A.M. Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects. Geophys. Res. Lett. 2012, 39, L21808. [Google Scholar] [CrossRef]
- Berg, L.K.; Berkowitz, C.M.; Barnard, J.C.; Senum, G.; Springston, S.R. Observations of the first aerosol indirect effect in shallow cumuli. Geophys. Res. Lett. 2011, 38, L03809. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Liu, Y.; Zhang, G.J.; Wu, X.; Endo, S.; Cao, L.; Li, Y.; Guo, X. Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation. J. Atmos. Sci. 2016, 73, 761–773. [Google Scholar] [CrossRef]
- Yau, K.M.; Rogers, R.R. A Short Course in Cloud Physics; Pergamon Press: Oxford, UK, 1979. [Google Scholar]
- Zhang, G.J.; Wu, X.; Zeng, X.; Mitovski, T. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE. Clim. Dyn. 2016, 47, 2177–2192. [Google Scholar] [CrossRef]
- Neggers, R.A.J.; Siebesma, A.P.; Jonker, H.J.J. A multiparcel model. for shallow cumulus convection. J. Atmos. 2002, 59, 1655–1668. [Google Scholar] [CrossRef]
- Lu, C.; Niu, S.; Liu, Y.; Vogelmann, A.M. Empirical relationship between entrainment rate and microphysics in cumulus clouds. Geophys. Res. Lett. 2013, 40, 2333–2338. [Google Scholar] [CrossRef]
- Leaitch, W.; Banic, C.; Isaac, G.; Couture, M.; Liu, P.; Gultepe, I.; Li, S.M.; Kleinman, L.; Daum, P.; MacPherson, J. Physical and chemical observations in marine stratus during the 1993 North. Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations. J. Geophys. Res. Atmos. 1996, 101, 29123–29135. [Google Scholar] [CrossRef]
- Brenguier, J.-L.; Pawlowska, H.; Schüller, L.; Preusker, R.; Fischer, J.; Fouquart, Y. Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci. 2000, 57, 803–821. [Google Scholar] [CrossRef] [Green Version]
- Desai, N.; Chandrakar, K.K.; Chang, K.; Cantrell, W.; Shaw, R.A. Influence of microphysical variability on stochastic condensation in a turbulent laboratory cloud. J. Atmos. Sci. 2017, 75, 189–201. [Google Scholar] [CrossRef]
- Chandrakar, K.K.; Cantrell, W.; Shaw, R.A. Influence of turbulent fluctuations on cloud droplet size dispersion and aerosol indirect effects. J. Atmos. Sci. 2018, 75, 29123–29135. [Google Scholar] [CrossRef]
- Bipin, K.; Götzfried, P.; Suresh, N.; Schumacher, J.; Shaw, R. Scale dependence of cloud microphysical response to turbulent entrainment and mixing. J. Adv. Model. Earth Syst. 2018, 10, 2777–2785. [Google Scholar] [CrossRef]
- TöLle, M.H.; Krueger, S.K. Effects of entrainment and mixing on droplet size distributions in warm cumulus clouds. J. Adv. Model. Earth Syst. 2014, 6, 281–299. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Yin, C.; Lu, C.; Jia, X.; Ye, F.; Qiu, Y.; Cheng, M. Large Eddy Simulation of Microphysics and Influencing Factors in Shallow Convective Clouds. Atmosphere 2021, 12, 485. https://doi.org/10.3390/atmos12040485
Zhou Z, Yin C, Lu C, Jia X, Ye F, Qiu Y, Cheng M. Large Eddy Simulation of Microphysics and Influencing Factors in Shallow Convective Clouds. Atmosphere. 2021; 12(4):485. https://doi.org/10.3390/atmos12040485
Chicago/Turabian StyleZhou, Zhuangzhuang, Chongzhi Yin, Chunsong Lu, Xingcan Jia, Fang Ye, Yujun Qiu, and Muning Cheng. 2021. "Large Eddy Simulation of Microphysics and Influencing Factors in Shallow Convective Clouds" Atmosphere 12, no. 4: 485. https://doi.org/10.3390/atmos12040485
APA StyleZhou, Z., Yin, C., Lu, C., Jia, X., Ye, F., Qiu, Y., & Cheng, M. (2021). Large Eddy Simulation of Microphysics and Influencing Factors in Shallow Convective Clouds. Atmosphere, 12(4), 485. https://doi.org/10.3390/atmos12040485